These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30846552)

  • 21. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition.
    Williams LE; Holtmaat A
    Neuron; 2019 Jan; 101(1):91-102.e4. PubMed ID: 30472077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons.
    Armstrong-James M; Diamond ME; Ebner FF
    J Neurosci; 1994 Nov; 14(11 Pt 2):6978-91. PubMed ID: 7965093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons.
    Datwani A; Iwasato T; Itohara S; Erzurumlu RS
    J Neurosci; 2002 Nov; 22(21):9171-5. PubMed ID: 12417641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex.
    Feldman DE
    Neuron; 2000 Jul; 27(1):45-56. PubMed ID: 10939330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury.
    Yu X; Koretsky AP
    Brain Connect; 2014 Nov; 4(9):709-17. PubMed ID: 25117691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex.
    Clem RL; Celikel T; Barth AL
    Science; 2008 Jan; 319(5859):101-4. PubMed ID: 18174444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency-specific response facilitation of supra and infragranular barrel cortical neurons depends on NMDA receptor activation in rats.
    Barros-Zulaica N; Castejon C; Nuñez A
    Neuroscience; 2014 Dec; 281():178-94. PubMed ID: 25281880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracortical processes regulating the integration of sensory information.
    Ebner FF; Armstrong-James MA
    Prog Brain Res; 1990; 86():129-41. PubMed ID: 1982365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition.
    Gambino F; Holtmaat A
    Neuron; 2012 Aug; 75(3):490-502. PubMed ID: 22884332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex.
    Glazewski S; McKenna M; Jacquin M; Fox K
    Eur J Neurosci; 1998 Jun; 10(6):2107-16. PubMed ID: 9753097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experience-dependent plasticity of rat barrel cortex: redistribution of activity across barrel-columns.
    Lebedev MA; Mirabella G; Erchova I; Diamond ME
    Cereb Cortex; 2000 Jan; 10(1):23-31. PubMed ID: 10639392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
    Kole K; Komuro Y; Provaznik J; Pistolic J; Benes V; Tiesinga P; Celikel T
    Gigascience; 2017 Oct; 6(10):1-6. PubMed ID: 29020745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs.
    Chung S; Jeong JH; Ko S; Yu X; Kim YH; Isaac JTR; Koretsky AP
    Cell Rep; 2017 Jun; 19(13):2707-2717. PubMed ID: 28658619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experience-dependent weakening of callosal synaptic connections in the absence of postsynaptic FMRP.
    Zhang Z; Gibson JR; Huber KM
    Elife; 2021 Oct; 10():. PubMed ID: 34617509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local cortical interactions determine the form of cortical plasticity.
    Wallace H; Fox K
    J Neurobiol; 1999 Oct; 41(1):58-63. PubMed ID: 10504192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation.
    Rema V; Armstrong-James M; Ebner FF
    J Neurosci; 1998 Dec; 18(23):10196-206. PubMed ID: 9822773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whisker experience-dependent mGluR signaling maintains synaptic strength in the mouse adolescent cortex.
    Kubota J; Mikami Y; Kanemaru K; Sekiya H; Okubo Y; Iino M
    Eur J Neurosci; 2016 Aug; 44(3):2004-14. PubMed ID: 27225340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of columnar topography in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex.
    Bender KJ; Rangel J; Feldman DE
    J Neurosci; 2003 Sep; 23(25):8759-70. PubMed ID: 14507976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.