These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30846705)

  • 1. MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules.
    Kapoor V; Hirst WG; Hentschel C; Preibisch S; Reber S
    Sci Rep; 2019 Mar; 9(1):3794. PubMed ID: 30846705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT).
    Ansari S; Gergely ZR; Flynn P; Li G; Moore JK; Betterton MD
    Biomolecules; 2023 Jun; 13(6):. PubMed ID: 37371519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.
    Bohner G; Gustafsson N; Cade NI; Maurer SP; Griffin LD; Surrey T
    J Microsc; 2016 Jan; 261(1):67-78. PubMed ID: 26444439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying yeast microtubules and spindles using the Toolkit for Automated Microtubule Tracking (TAMiT).
    Ansari S; Gergely ZR; Flynn P; Li G; Moore JK; Betterton MD
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy.
    Chaphalkar AR; Jain K; Gangan MS; Athale CA
    PLoS One; 2016; 11(12):e0167620. PubMed ID: 27992448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.
    Xiao X; Geyer VF; Bowne-Anderson H; Howard J; Sbalzarini IF
    Med Image Anal; 2016 Aug; 32():157-72. PubMed ID: 27104582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis.
    Smal I; Draegestein K; Galjart N; Niessen W; Meijering E
    IEEE Trans Med Imaging; 2008 Jun; 27(6):789-804. PubMed ID: 18541486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting microtubule networks from superresolution single-molecule localization microscopy data.
    Zhang Z; Nishimura Y; Kanchanawong P
    Mol Biol Cell; 2017 Jan; 28(2):333-345. PubMed ID: 27852898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework.
    Yang Q; Karpikov A; Toomre D; Duncan JS
    IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion tracking of the outer tips of microtubules.
    Hadjidemetriou S; Toomre D; Duncan J
    Med Image Anal; 2008 Dec; 12(6):689-702. PubMed ID: 18571462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs.
    Mangeol P; Prevo B; Peterman EJ
    Mol Biol Cell; 2016 Jun; 27(12):1948-57. PubMed ID: 27099372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cega: a single particle segmentation algorithm to identify moving particles in a noisy system.
    Masucci EM; Relich PK; Ostap EM; Holzbaur ELF; Lakadamyali M
    Mol Biol Cell; 2021 Apr; 32(9):931-941. PubMed ID: 33788586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeconvolutionLab2: An open-source software for deconvolution microscopy.
    Sage D; Donati L; Soulez F; Fortun D; Schmit G; Seitz A; Guiet R; Vonesch C; Unser M
    Methods; 2017 Feb; 115():28-41. PubMed ID: 28057586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint.
    Xiao C; Smith ZJ; Chu K
    J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro.
    Zanic M
    Methods Mol Biol; 2016; 1413():47-61. PubMed ID: 27193842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule dynamics analysis using kymographs and variable-rate particle filters.
    Smal I; Grigoriev I; Akhmanova A; Niessen WJ; Meijering E
    IEEE Trans Image Process; 2010 Jul; 19(7):1861-76. PubMed ID: 20227980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation and 3D reconstruction of microtubules in total internal reflection fluorescence microscopy (TIRFM).
    Hadjidemetriou S; Toomre D; Duncan JS
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):761-9. PubMed ID: 16685915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
    Stylianidou S; Brennan C; Nissen SB; Kuwada NJ; Wiggins PA
    Mol Microbiol; 2016 Nov; 102(4):690-700. PubMed ID: 27569113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.