These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30846780)

  • 1. Phenology, mobility and behaviour of the arcto-alpine species Boloria napaea in its arctic habitat.
    Ehl S; Holzhauer SIJ; Ryrholm N; Schmitt T
    Sci Rep; 2019 Mar; 9(1):3912. PubMed ID: 30846780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexual dimorphism in the alpine butterflies Boloria pales and Boloria napaea: differences in movement and foraging behavior (Lepidoptera: Nymphalidae).
    Ehl S; Hostert K; Korsch J; Gros P; Schmitt T
    Insect Sci; 2018 Dec; 25(6):1089-1101. PubMed ID: 28618194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersal and adaptation strategies of the high mountain butterfly
    Ehl S; Böhm N; Wörner M; Rákosy L; Schmitt T
    Front Zool; 2019; 16():1. PubMed ID: 30675174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats?
    Ehl S; Dalstein V; Tull F; Gros P; Schmitt T
    Insect Sci; 2018 Feb; 25(1):161-171. PubMed ID: 27628710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly.
    Junker M; Wagner S; Gros P; Schmitt T
    Oecologia; 2010 Dec; 164(4):971-80. PubMed ID: 20652595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coevolution between flight morphology, vertical stratification and sexual dimorphism: what can we learn from tropical butterflies?
    Graça MB; Pequeno PACL; Franklin E; Morais JW
    J Evol Biol; 2017 Oct; 30(10):1862-1871. PubMed ID: 28714129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.
    Devries PJ; Penz CM; Hill RI
    J Anim Ecol; 2010 Sep; 79(5):1077-85. PubMed ID: 20487088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New model species for arctic-alpine plant molecular ecology.
    Pyhäjärvi T; Mattila TM
    Mol Ecol Resour; 2021 Apr; 21(3):637-640. PubMed ID: 33501729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.
    Lanier HC; Gunderson AM; Weksler M; Fedorov VB; Olson LE
    PLoS One; 2015; 10(3):e0118396. PubMed ID: 25734275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow anthropogenic corridors direct the movement of a generalist boreal butterfly.
    Riva F; Acorn JH; Nielsen SE
    Biol Lett; 2018 Feb; 14(2):. PubMed ID: 29491029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming.
    Hupp JW; Ward DH; Soto DX; Hobson KA
    Glob Chang Biol; 2018 Nov; 24(11):5056-5071. PubMed ID: 30092605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies.
    Trochet A; Legrand D; Larranaga N; Ducatez S; Calvez O; Cote J; Clobert J; Baguette M
    J Anim Ecol; 2013 Sep; 82(5):946-55. PubMed ID: 23600890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight Morphology, Compound Eye Structure and Dispersal in the Bog and the Cranberry Fritillary Butterflies: An Inter- and Intraspecific Comparison.
    Turlure C; Schtickzelle N; Van Dyck H; Seymoure B; Rutowski R
    PLoS One; 2016; 11(6):e0158073. PubMed ID: 27336590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan.
    Sandercock BK; Martin K; Hannon SJ
    Oecologia; 2005 Nov; 146(1):13-24. PubMed ID: 16010534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Successful despite poor flight performance: range expansion is associated with enhanced exploratory behaviour and fast development.
    Reim E; Blesinger S; Förster L; Fischer K
    J Evol Biol; 2018 Aug; 31(8):1165-1179. PubMed ID: 29845691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps.
    Rehnus M; Bollmann K; Schmatz DR; Hackländer K; Braunisch V
    Glob Chang Biol; 2018 Jul; 24(7):3236-3253. PubMed ID: 29532601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Arctic butterflies become smaller with rising temperatures.
    Bowden JJ; Eskildsen A; Hansen RR; Olsen K; Kurle CM; Høye TT
    Biol Lett; 2015 Oct; 11(10):. PubMed ID: 26445981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari, Oribatida).
    Søvik G
    Exp Appl Acarol; 2004; 34(1-2):3-20. PubMed ID: 15597597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersal-related life-history trade-offs in a butterfly metapopulation.
    Hanski I; Saastamoinen M; Ovaskainen O
    J Anim Ecol; 2006 Jan; 75(1):91-100. PubMed ID: 16903046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.