These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30846926)

  • 1. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats.
    Polo-Castillo LE; Villavicencio M; Ramírez-Lugo L; Illescas-Huerta E; Moreno MG; Ruiz-Huerta L; Gutierrez R; Sotres-Bayon F; Caballero-Ruiz A
    Front Neurosci; 2019; 13():128. PubMed ID: 30846926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature microdrive for extracellular recording of neuronal activity in freely moving animals.
    Korshunov VA
    J Neurosci Methods; 1995 Mar; 57(1):77-80. PubMed ID: 7791367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice.
    Korshunov VA
    J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale chronically implantable precision motorized microdrive array for freely behaving animals.
    Yamamoto J; Wilson MA
    J Neurophysiol; 2008 Oct; 100(4):2430-40. PubMed ID: 18667539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 10. A low cost, high precision subminiature microdrive for extracellular unit recording in behaving animals.
    Bilkey DK; Muir GM
    J Neurosci Methods; 1999 Oct; 92(1-2):87-90. PubMed ID: 10595706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals.
    Billard MW; Bahari F; Kimbugwe J; Alloway KD; Gluckman BJ
    eNeuro; 2018; 5(6):. PubMed ID: 30627656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats.
    Márton G; Baracskay P; Cseri B; Plósz B; Juhász G; Fekete Z; Pongrácz A
    J Neural Eng; 2016 Apr; 13(2):026025. PubMed ID: 26924827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed Recoverable Microdrive and Base Plate System for Rodent Electrophysiology.
    Vöröslakos M; Miyawaki H; Royer S; Diba K; Yoon E; Petersen PC; Buzsáki G
    Bio Protoc; 2021 Aug; 11(16):e4137. PubMed ID: 34541053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice.
    Voigts J; Siegle JH; Pritchett DL; Moore CI
    Front Syst Neurosci; 2013; 7():8. PubMed ID: 23717267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent.
    Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G
    Elife; 2021 May; 10():. PubMed ID: 34009122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and assembly of an ultra-light motorized microdrive for chronic neural recordings in small animals.
    Otchy TM; Ölveczky BP
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23169237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DREAM Implant: A Lightweight, Modular, and Cost-Effective Implant System for Chronic Electrophysiology in Head-Fixed and Freely Behaving Mice.
    Schröder T; Taylor R; Abd El Hay M; Nemri A; França A; Battaglia F; Tiesinga P; Schölvinck ML; Havenith MN
    J Vis Exp; 2024 Jul; (209):. PubMed ID: 39141557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wireless neural recording system with a precision motorized microdrive for freely behaving animals.
    Hasegawa T; Fujimoto H; Tashiro K; Nonomura M; Tsuchiya A; Watanabe D
    Sci Rep; 2015 Jan; 5():7853. PubMed ID: 25597933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.