These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30847287)
1. Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Patel P; Shah R; Joshi B; Ramar K; Natarajan A Biotechnol Rep (Amst); 2019 Mar; 21():e00317. PubMed ID: 30847287 [TBL] [Abstract][Full Text] [Related]
2. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Jayakumar V; Bhaskaran R; Tsushima S Can J Microbiol; 2007 Feb; 53(2):196-206. PubMed ID: 17496967 [TBL] [Abstract][Full Text] [Related]
4. Complete genome sequence of biocontrol strain Xie L; Liu L; Luo Y; Rao X; Di Y; Liu H; Qian Z; Shen Q; He L; Li F Front Microbiol; 2023; 14():1180474. PubMed ID: 37333645 [TBL] [Abstract][Full Text] [Related]
5. Antifungal activity of chitinase II against Colletotrichum falcatum Went. causing red rot disease in transgenic sugarcane. Tariq M; Khan A; Tabassum B; Toufiq N; Bhatti MU; Riaz S; Nasir IA; Husnain T Turk J Biol; 2018; 42(1):45-53. PubMed ID: 30814869 [TBL] [Abstract][Full Text] [Related]
6. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Li HB; Singh RK; Singh P; Song QQ; Xing YX; Yang LT; Li YR Front Microbiol; 2017; 8():1268. PubMed ID: 28769881 [TBL] [Abstract][Full Text] [Related]
7. Antifungal activity of chitinases produced by some fluorescent pseudomonads against Colletotrichum falcatum Went causing red rot disease in sugarcane. Viswanathan R; Samiyappan R Microbiol Res; 2001 Mar; 155(4):309-14. PubMed ID: 11297362 [TBL] [Abstract][Full Text] [Related]
8. Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Mehnaz S; Weselowski B; Aftab F; Zahid S; Lazarovits G; Iqbal J Can J Microbiol; 2009 Aug; 55(8):1007-11. PubMed ID: 19898541 [TBL] [Abstract][Full Text] [Related]
9. Role of miRNAs in the host-pathogen interaction between sugarcane and Colletotrichum falcatum, the red rot pathogen. Nandakumar M; Malathi P; Sundar AR; Rajadurai CP; Philip M; Viswanathan R Plant Cell Rep; 2021 May; 40(5):851-870. PubMed ID: 33818644 [TBL] [Abstract][Full Text] [Related]
10. Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane. Ashwin NMR; Barnabas L; Ramesh Sundar A; Malathi P; Viswanathan R; Masi A; Agrawal GK; Rakwal R J Proteomics; 2017 Oct; 169():2-20. PubMed ID: 28546091 [TBL] [Abstract][Full Text] [Related]
11. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Li X; Liu Y; Wang Z; Yang C; Zhang R; Luo Y; Ma Y; Deng Y Front Bioeng Biotechnol; 2022; 10():1062351. PubMed ID: 36588942 [TBL] [Abstract][Full Text] [Related]
12. CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco. Ashwin NMR; Barnabas L; Ramesh Sundar A; Malathi P; Viswanathan R; Masi A; Agrawal GK; Rakwal R Appl Microbiol Biotechnol; 2018 Jul; 102(14):6001-6021. PubMed ID: 29728727 [TBL] [Abstract][Full Text] [Related]
13. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. Goswami D; Borah SN; Lahkar J; Handique PJ; Deka S J Basic Microbiol; 2015 Nov; 55(11):1265-74. PubMed ID: 26173581 [TBL] [Abstract][Full Text] [Related]
14. Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon. Yang W Braz J Microbiol; 2019 Jul; 50(3):749-757. PubMed ID: 31111431 [TBL] [Abstract][Full Text] [Related]
15. Identification and Characterization of Kwon HT; Lee Y; Kim J; Balaraju K; Kim HT; Jeon Y Front Microbiol; 2022; 13():826827. PubMed ID: 35308370 [TBL] [Abstract][Full Text] [Related]
16. Unleashing the Potential of Bacterial Isolates from Apple Tree Rhizosphere for Biocontrol of Derikvand F; Bazgir E; El Jarroudi M; Darvishnia M; Mirzaei Najafgholi H; Laasli SE; Lahlali R J Fungi (Basel); 2023 Aug; 9(8):. PubMed ID: 37623599 [No Abstract] [Full Text] [Related]
17. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969 [TBL] [Abstract][Full Text] [Related]
18. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Islam MR; Madhaiyan M; Deka Boruah HP; Yim W; Lee G; Saravanan VS; Fu Q; Hu H; Sa T J Microbiol Biotechnol; 2009 Oct; 19(10):1213-22. PubMed ID: 19884783 [TBL] [Abstract][Full Text] [Related]
19. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. González-Sánchez MÁ; Pérez-Jiménez RM; Pliego C; Ramos C; de Vicente A; Cazorla FM J Appl Microbiol; 2010 Jul; 109(1):65-78. PubMed ID: 19961545 [TBL] [Abstract][Full Text] [Related]
20. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane. Chandra A; Keizerweerd AT; Que Y; Grisham MP Mol Biol Rep; 2015 Aug; 42(8):1309-16. PubMed ID: 25861736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]