These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30847632)
1. Molecular docking and dynamic studies of crepiside E beta glucopyranoside as an inhibitor of snake venom PLA2. Kumar MS; R A; Bhaskaran S; D DR; Nair AS; R SP J Mol Model; 2019 Mar; 25(4):88. PubMed ID: 30847632 [TBL] [Abstract][Full Text] [Related]
2. Computational and in vitro insights on snake venom phospholipase A Muthusamy K; Chinnasamy S; Nagarajan S; Sivaraman T J Biomol Struct Dyn; 2018 Dec; 36(16):4197-4208. PubMed ID: 29171346 [TBL] [Abstract][Full Text] [Related]
3. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies. Chinnasamy S; Chinnasamy S; Nagamani S; Muthusamy K J Biomol Struct Dyn; 2015; 33(7):1516-27. PubMed ID: 25192471 [TBL] [Abstract][Full Text] [Related]
4. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2. Sivaramakrishnan V; Ilamathi M; Ghosh KS; Sathish S; Gowda TV; Vishwanath BS; Rangappa KS; Dhananjaya BL J Mol Recognit; 2016 Jan; 29(1):22-32. PubMed ID: 26218369 [TBL] [Abstract][Full Text] [Related]
5. S S; V S; I JM; P VM; P LK; Nair AS; R SP; Oommen OV J Biomol Struct Dyn; 2023; 41(16):7874-7883. PubMed ID: 36153001 [TBL] [Abstract][Full Text] [Related]
6. High-affinity selective inhibitor against phospholipase A2 (PLA2): a computational study. Chinnasamy S; Chinnasamy S; Muthusamy K J Recept Signal Transduct Res; 2016; 36(2):111-8. PubMed ID: 26422703 [TBL] [Abstract][Full Text] [Related]
7. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). Chinnasamy S; Selvaraj G; Selvaraj C; Kaushik AC; Kaliamurthi S; Khan A; Singh SK; Wei DQ Int J Biol Macromol; 2020 Feb; 144():53-66. PubMed ID: 31838071 [TBL] [Abstract][Full Text] [Related]
8. In silico molecular interaction analysis of LTNF peptide-LT10 with snake venom enzymes. Chavan SG; Deobagkar DD Protein Pept Lett; 2014 Jul; 21(7):646-56. PubMed ID: 24654849 [TBL] [Abstract][Full Text] [Related]
9. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Pereañez JA; Patiño AC; Núñez V; Osorio E Chem Biol Interact; 2014 Sep; 220():94-101. PubMed ID: 24995575 [TBL] [Abstract][Full Text] [Related]
10. Discovery of a new Sukumaran S; Prasanna VM; Panicker LK; Nair AS; Oommen OV J Biomol Struct Dyn; 2024 Aug; 42(13):6954-6967. PubMed ID: 37490072 [TBL] [Abstract][Full Text] [Related]
11. Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): Insights into the structure-function relationships of snake venom toxins. Oliveira A; Bleicher L; Schrago CG; Silva Junior FP Toxicon; 2018 May; 146():50-60. PubMed ID: 29608922 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of bioactive compounds of Clematis gouriana Roxb. ex DC against snake venom phospholipase A Muthusamy K; Chinnasamy S; Nagarajan S; Sivaraman T; Chinnasamy S J Biomol Struct Dyn; 2017 Jul; 35(9):1936-1949. PubMed ID: 27355444 [TBL] [Abstract][Full Text] [Related]
13. Exploring the inhibitory potential of phytochemicals from Vernonia glaberrima leaves against snake venom toxins through computational simulation and experimental validation. Yusuf AJ; Bugaje AI; Sadiq M; Salihu M; Adamu HW; Abdulrahman M Toxicon; 2024 Aug; 247():107838. PubMed ID: 38971473 [TBL] [Abstract][Full Text] [Related]