BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 30847657)

  • 1. Right Ventricular Function After Pulmonary Artery Banding: Adaptive Processes Assessed by CMR and Conductance Catheter Measurements in Sheep.
    Gufler H; Niefeldt S; Boltze J; Prietz S; Klopsch C; Wagner S; Vollmar B; Yerebakan C
    J Cardiovasc Transl Res; 2019 Oct; 12(5):459-466. PubMed ID: 30847657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of agreement between cardiac magnetic resonance and conductance catheter measurements of right ventricular volumes after pulmonary artery banding.
    Gufler H; Wagner S; Niefeldt S; Klopsch C; Brill R; Wohlgemuth WA; Yerebakan C
    Acta Radiol; 2020 Jul; 61(7):894-902. PubMed ID: 31752497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct loading conditions reveal various patterns of right ventricular adaptation.
    Borgdorff MA; Bartelds B; Dickinson MG; Steendijk P; de Vroomen M; Berger RM
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H354-64. PubMed ID: 23729212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding.
    Boehm M; Tian X; Mao Y; Ichimura K; Dufva MJ; Ali K; Dannewitz Prosseda S; Shi Y; Kuramoto K; Reddy S; Kheyfets VO; Metzger RJ; Spiekerkoetter E
    Cardiovasc Res; 2020 Aug; 116(10):1700-1709. PubMed ID: 31738411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: a pressure-volume study using the conductance catheter.
    McCabe C; White PA; Hoole SP; Axell RG; Priest AN; Gopalan D; Taboada D; MacKenzie Ross R; Morrell NW; Shapiro LM; Pepke-Zaba J
    J Appl Physiol (1985); 2014 Feb; 116(4):355-63. PubMed ID: 24356516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary arterial banding in mice may be a suitable model for studies on ventricular mechanics in pediatric pulmonary arterial hypertension.
    Dufva MJ; Boehm M; Ichimura K; Truong U; Qin X; Tabakh J; Hunter KS; Ivy D; Spiekerkoetter E; Kheyfets VO
    J Cardiovasc Magn Reson; 2021 Jun; 23(1):66. PubMed ID: 34078382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension.
    Fenster BE; Lasalvia L; Schroeder JD; Smyser J; Silveira LJ; Buckner JK; Brown KK
    Heart Vessels; 2016 Jun; 31(6):939-46. PubMed ID: 25976729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct right ventricle remodeling in response to pressure overload in the rat.
    Mendes-Ferreira P; Santos-Ribeiro D; Adão R; Maia-Rocha C; Mendes-Ferreira M; Sousa-Mendes C; Leite-Moreira AF; Brás-Silva C
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H85-95. PubMed ID: 27199115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.
    Jang S; Vanderpool RR; Avazmohammadi R; Lapshin E; Bachman TN; Sacks M; Simon MA
    J Am Heart Assoc; 2017 Sep; 6(9):. PubMed ID: 28899895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-To-Pulmonary Shunt.
    Pereda D; García-Lunar I; Sierra F; Sánchez-Quintana D; Santiago E; Ballesteros C; Encalada JF; Sánchez-González J; Fuster V; Ibáñez B; García-Álvarez A
    Circ Cardiovasc Imaging; 2016 Sep; 9(9):. PubMed ID: 27601365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload.
    Apitz C; Honjo O; Humpl T; Li J; Assad RS; Cho MY; Hong J; Friedberg MK; Redington AN
    J Thorac Cardiovasc Surg; 2012 Dec; 144(6):1494-501. PubMed ID: 22818124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot.
    Bove T; Vandekerckhove K; Bouchez S; Wouters P; Somers P; Van Nooten G
    J Thorac Cardiovasc Surg; 2014 Jun; 147(6):1956-65. PubMed ID: 24280710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of trabecular hypertrophy in right ventricular adaptation to chronic pressure overload.
    van de Veerdonk MC; Dusoswa SA; Marcus JT; Bogaard HJ; Spruijt O; Kind T; Westerhof N; Vonk-Noordegraaf A
    Int J Cardiovasc Imaging; 2014 Feb; 30(2):357-65. PubMed ID: 24306052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reserve of Right Ventricular-Arterial Coupling in the Setting of Chronic Overload.
    Tello K; Dalmer A; Axmann J; Vanderpool R; Ghofrani HA; Naeije R; Roller F; Seeger W; Sommer N; Wilhelm J; Gall H; Richter MJ
    Circ Heart Fail; 2019 Jan; 12(1):e005512. PubMed ID: 30616360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac Magnetic Resonance Imaging-Based Right Ventricular Strain Analysis for Assessment of Coupling and Diastolic Function in Pulmonary Hypertension.
    Tello K; Dalmer A; Vanderpool R; Ghofrani HA; Naeije R; Roller F; Seeger W; Wilhelm J; Gall H; Richter MJ
    JACC Cardiovasc Imaging; 2019 Nov; 12(11 Pt 1):2155-2164. PubMed ID: 30878422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load.
    Bartelds B; Borgdorff MA; Smit-van Oosten A; Takens J; Boersma B; Nederhoff MG; Elzenga NJ; van Gilst WH; De Windt LJ; Berger RM
    Eur J Heart Fail; 2011 Dec; 13(12):1275-82. PubMed ID: 22024026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac magnetic resonance-derived right ventricular outflow tract systolic flow acceleration: a novel index of right ventricular function and prognosis in patients with pulmonary arterial hypertension.
    Kang KW; Chang HJ; Yoo YP; Yoon HS; Kim YJ; Choi BW; Shim CY; Ha J; Chung N
    Int J Cardiovasc Imaging; 2013 Dec; 29(8):1759-67. PubMed ID: 23861020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiovascular magnetic resonance-guided right heart catheterization in a conventional CMR environment - predictors of procedure success and duration in pulmonary artery hypertension.
    Knight DS; Kotecha T; Martinez-Naharro A; Brown JT; Bertelli M; Fontana M; Muthurangu V; Coghlan JG
    J Cardiovasc Magn Reson; 2019 Sep; 21(1):57. PubMed ID: 31495338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension.
    Akazawa Y; Okumura K; Ishii R; Slorach C; Hui W; Ide H; Honjo O; Sun M; Kabir G; Connelly K; Friedberg MK
    J Appl Physiol (1985); 2020 Aug; 129(2):238-246. PubMed ID: 32644912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.
    Schmuck EG; Hacker TA; Schreier DA; Chesler NC; Wang Z
    Am J Physiol Heart Circ Physiol; 2019 May; 316(5):H1005-H1013. PubMed ID: 30822119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.