These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30847695)

  • 41. Microfluidic Devices for Forensic DNA Analysis: A Review.
    Bruijns B; van Asten A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes.
    Zheng M; Wang Z; Chang H; Wang L; Chew SWT; Lio DCS; Cui M; Liu L; Tee BCK; Xu C
    Adv Healthc Mater; 2020 May; 9(10):e1901683. PubMed ID: 32351042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanophotonic-Carbohydrate Lab-on-a-Microneedle for Rapid Detection of Human Cystatin C in Finger-Prick Blood.
    Puttaswamy SV; Lubarsky GV; Kelsey C; Zhang X; Finlay D; McLaughlin JA; Bhalla N
    ACS Nano; 2020 Sep; 14(9):11939-11949. PubMed ID: 32790349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications.
    Liu P; Du H; Chen Y; Wang H; Mao J; Zhang L; Tao J; Zhu J
    J Mater Chem B; 2020 Mar; 8(10):2032-2039. PubMed ID: 32049084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.
    Strambini LM; Longo A; Scarano S; Prescimone T; Palchetti I; Minunni M; Giannessi D; Barillaro G
    Biosens Bioelectron; 2015 Apr; 66():162-8. PubMed ID: 25601169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration.
    Kim S; Lee MS; Yang HS; Jung JH
    Sci Rep; 2021 Jul; 11(1):14018. PubMed ID: 34234204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices.
    Saha T; Mukherjee S; Dickey MD; Velev OD
    Lab Chip; 2024 Feb; 24(5):1244-1265. PubMed ID: 38197332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward Efficient Wound Management: Bioinspired Microfluidic and Microneedle Patch.
    Wang Y; Gao B; He B
    Small; 2023 Jan; 19(3):e2206270. PubMed ID: 36464498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MEMS and microfluidics for diagnostics devices.
    Rosen Y; Gurman P
    Curr Pharm Biotechnol; 2010 Jun; 11(4):366-75. PubMed ID: 20199381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repurposing a microfluidic formulation device for automated DNA construction.
    Goyal G; Elsbree N; Fero M; Hillson NJ; Linshiz G
    PLoS One; 2020; 15(11):e0242157. PubMed ID: 33175889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated microfluidic platform for oral diagnostics.
    Herr AE; Hatch AV; Giannobile WV; Throckmorton DJ; Tran HM; Brennan JS; Singh AK
    Ann N Y Acad Sci; 2007 Mar; 1098():362-74. PubMed ID: 17435142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms of sampling interstitial fluid from skin using a microneedle patch.
    Samant PP; Prausnitz MR
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4583-4588. PubMed ID: 29666252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis.
    Sun M; Durkin P; Li J; Toth TL; He X
    ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.