These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30847695)

  • 61. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study.
    Bonifácio ED; González-Torres LA; Meireles AB; Guimarães MV; Araujo CA
    Comput Methods Programs Biomed; 2019 Dec; 182():105039. PubMed ID: 31472476
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluorescent sensor array in a microfluidic chip.
    Basabe-Desmonts L; Benito-López F; Gardeniers HJ; Duwel R; van den Berg A; Reinhoudt DN; Crego-Calama M
    Anal Bioanal Chem; 2008 Jan; 390(1):307-15. PubMed ID: 18034337
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Red blood cells flows in rectilinear microfluidic chip.
    Anandan P; Ortiz D; Intaglietta M; Cabrales PJ; Bucolo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3225-8. PubMed ID: 26736979
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simplified fluid-structure coupled analysis of particle movement for designing of microfluidic cell sorter.
    Takagi Y; Kotev V; Yano K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3229-32. PubMed ID: 26736980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.
    Snyder JL; Getpreecharsawas J; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; Borkholder DA; McGrath JL
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18425-30. PubMed ID: 24167263
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application of dissolving microneedles to glucose monitoring through dermal interstitial fluid.
    Ito Y; Taniguchi M; Hayashi A; Anai M; Morita S; Ko E; Yoshimoto N; Yoshii Y; Kobuchi S; Sakaeda T; Takada K
    Biol Pharm Bull; 2014; 37(11):1776-81. PubMed ID: 25366483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level.
    Xu N; Zhang M; Xu W; Ling G; Yu J; Zhang P
    Analyst; 2022 Mar; 147(7):1478-1491. PubMed ID: 35285841
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microfabrication of human organs-on-chips.
    Huh D; Kim HJ; Fraser JP; Shea DE; Khan M; Bahinski A; Hamilton GA; Ingber DE
    Nat Protoc; 2013 Nov; 8(11):2135-57. PubMed ID: 24113786
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device.
    Kim J; Yoon J; Byun JY; Kim H; Han S; Kim J; Lee JH; Jo HS; Chung S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671983
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sampling interstitial fluid from human skin using a microneedle patch.
    Samant PP; Niedzwiecki MM; Raviele N; Tran V; Mena-Lapaix J; Walker DI; Felner EI; Jones DP; Miller GW; Prausnitz MR
    Sci Transl Med; 2020 Nov; 12(571):. PubMed ID: 33239384
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm.
    Zhou M; Zheng H; Wang Z; Li R; Liu X; Zhang W; Wang Z; Li H; Wei Z; Hu Z
    Theranostics; 2017; 7(19):4710-4721. PubMed ID: 29187898
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patterned Photonic Nitrocellulose for Pseudo-Paper Microfluidics.
    Gao B; Liu H; Gu Z
    Anal Chem; 2016 May; 88(10):5424-9. PubMed ID: 27088587
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An electrochemical-sensor system for real-time flow measurements in porous materials.
    Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK
    Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids.
    Wiederoder MS; Peterken L; Lu AX; Rahmanian OD; Raghavan SR; DeVoe DL
    Analyst; 2015 Aug; 140(16):5724-31. PubMed ID: 26160546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.