BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30848059)

  • 1. Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation.
    Tiono J; Surate Solaligue DE; Mižíková I; Nardiello C; Vadász I; Böttcher-Friebertshäuser E; Ehrhardt H; Herold S; Seeger W; Morty RE
    Pediatr Pulmonol; 2019 Jul; 54(7):1060-1077. PubMed ID: 30848059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic basis of murine responses to hyperoxia-induced lung injury.
    Whitehead GS; Burch LH; Berman KG; Piantadosi CA; Schwartz DA
    Immunogenetics; 2006 Oct; 58(10):793-804. PubMed ID: 17001473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of litter size on survival, growth and lung alveolarization of newborn mouse pups.
    Feddersen S; Nardiello C; Selvakumar B; Vadász I; Herold S; Seeger W; Morty RE
    Ann Anat; 2020 Nov; 232():151579. PubMed ID: 32688019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-dependent effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after neonatal hyperoxia.
    Will JP; Hirani D; Thielen F; Klein F; Vohlen C; Dinger K; Dötsch J; Alejandre Alcázar MA
    Am J Physiol Regul Integr Comp Physiol; 2019 Jul; 317(1):R169-R181. PubMed ID: 31067073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ozone-induced acute pulmonary injury in inbred mouse strains.
    Savov JD; Whitehead GS; Wang J; Liao G; Usuka J; Peltz G; Foster WM; Schwartz DA
    Am J Respir Cell Mol Biol; 2004 Jul; 31(1):69-77. PubMed ID: 14975936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.
    Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS
    Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia.
    Rath P; Nardiello C; Surate Solaligue DE; Agius R; Mižíková I; Hühn S; Mayer K; Vadász I; Herold S; Runkel F; Seeger W; Morty RE
    Pediatr Res; 2017 May; 81(5):795-805. PubMed ID: 28141790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia.
    Mižíková I; Pfeffer T; Nardiello C; Surate Solaligue DE; Steenbock H; Tatsukawa H; Silva DM; Vadász I; Herold S; Pease RJ; Iismaa SE; Hitomi K; Seeger W; Brinckmann J; Morty RE
    FEBS J; 2018 Aug; 285(16):3056-3076. PubMed ID: 29935061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
    Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI
    Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung.
    Chen CM; Liu YC; Chen YJ; Chou HC
    Lung; 2017 Oct; 195(5):661-669. PubMed ID: 28689251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings.
    Revhaug C; Bik-Multanowski M; Zasada M; Rognlien AGW; Günther CC; Ksiązek T; Madetko-Talowska A; Szewczyk K; Grabowska A; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD
    Neonatology; 2019; 116(3):269-277. PubMed ID: 31454811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia.
    Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y
    Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.
    Mižíková I; Ruiz-Camp J; Steenbock H; Madurga A; Vadász I; Herold S; Mayer K; Seeger W; Brinckmann J; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2015 Jun; 308(11):L1145-58. PubMed ID: 25840994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia.
    Li Q; Li R; Wall SB; Dunigan K; Ren C; Jilling T; Rogers LK; Tipple TE
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L736-L742. PubMed ID: 29368550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia.
    Kandasamy J; Rezonzew G; Jilling T; Ballinger S; Ambalavanan N
    Am J Physiol Lung Cell Mol Physiol; 2019 Dec; 317(6):L740-L747. PubMed ID: 31432715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary Changes Precede Disordered Alveolarization in a Mouse Model of Bronchopulmonary Dysplasia.
    Appuhn SV; Siebert S; Myti D; Wrede C; Surate Solaligue DE; Pérez-Bravo D; Brandenberger C; Schipke J; Morty RE; Grothausmann R; Mühlfeld C
    Am J Respir Cell Mol Biol; 2021 Jul; 65(1):81-91. PubMed ID: 33784484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.
    Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S
    J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant MnTBAP does not protect adult mice from neonatal hyperoxic lung injury.
    Kiskurno S; Ryan RM; Paturi B; Wang H; Kumar VH
    Respir Physiol Neurobiol; 2020 Nov; 282():103545. PubMed ID: 32927098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin-33 (IL-33) Increases Hyperoxia-Induced Bronchopulmonary Dysplasia in Newborn Mice by Regulation of Inflammatory Mediators.
    Tang X
    Med Sci Monit; 2018 Sep; 24():6717-6728. PubMed ID: 30244258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury.
    Dumpa V; Nielsen L; Wang H; Kumar VHS
    BMC Pulm Med; 2019 Jul; 19(1):138. PubMed ID: 31362742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.