These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Preclinical Molecular Imaging for Precision Medicine in Breast Cancer Mouse Models. Fiordelisi MF; Auletta L; Meomartino L; Basso L; Fatone G; Salvatore M; Mancini M; Greco A Contrast Media Mol Imaging; 2019; 2019():8946729. PubMed ID: 31598114 [TBL] [Abstract][Full Text] [Related]
4. Patient-derived xenografts as in vivo models for research in urological malignancies. Inoue T; Terada N; Kobayashi T; Ogawa O Nat Rev Urol; 2017 May; 14(5):267-283. PubMed ID: 28248952 [TBL] [Abstract][Full Text] [Related]
5. Patient-derived xenograft models for personalized medicine in colorectal cancer. Xie J; Lin Y Clin Exp Med; 2020 May; 20(2):167-172. PubMed ID: 32100151 [TBL] [Abstract][Full Text] [Related]
6. Discovery of a drug targeting microenvironmental support for lymphoma cells by screening using patient-derived xenograft cells. Sugimoto K; Hayakawa F; Shimada S; Morishita T; Shimada K; Katakai T; Tomita A; Kiyoi H; Naoe T Sci Rep; 2015 Aug; 5():13054. PubMed ID: 26278963 [TBL] [Abstract][Full Text] [Related]
7. Patient-derived tumor xenografts of lymphoproliferative disorders: are they surrogates for the human disease? Pizzi M; Inghirami G Curr Opin Hematol; 2017 Jul; 24(4):384-392. PubMed ID: 28594662 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine. Castellsagué J; Gel B; Fernández-Rodríguez J; Llatjós R; Blanco I; Benavente Y; Pérez-Sidelnikova D; García-Del Muro J; Viñals JM; Vidal A; Valdés-Mas R; Terribas E; López-Doriga A; Pujana MA; Capellá G; Puente XS; Serra E; Villanueva A; Lázaro C EMBO Mol Med; 2015 May; 7(5):608-27. PubMed ID: 25810463 [TBL] [Abstract][Full Text] [Related]
9. Establishment of a platform of non-small-cell lung cancer patient-derived xenografts with clinical and genomic annotation. Kang HN; Choi JW; Shim HS; Kim J; Kim DJ; Lee CY; Hong MH; Park SY; Park AY; Shin EJ; Lee SY; Pyo KH; Yun MR; Choi HM; Lee SS; Kim SY; Lee H; Paik S; Cho BC; Lee JG; Kim HR Lung Cancer; 2018 Oct; 124():168-178. PubMed ID: 30268457 [TBL] [Abstract][Full Text] [Related]
10. Targeting Cancer Cells and Tumor Microenvironment in Preclinical and Clinical Models of Hodgkin Lymphoma Using the Dual PI3Kδ/γ Inhibitor RP6530. Locatelli SL; Careddu G; Serio S; Consonni FM; Maeda A; Viswanadha S; Vakkalanka S; Castagna L; Santoro A; Allavena P; Sica A; Carlo-Stella C Clin Cancer Res; 2019 Feb; 25(3):1098-1112. PubMed ID: 30352904 [TBL] [Abstract][Full Text] [Related]
11. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Ruggeri BA; Camp F; Miknyoczki S Biochem Pharmacol; 2014 Jan; 87(1):150-61. PubMed ID: 23817077 [TBL] [Abstract][Full Text] [Related]
12. Patient-derived tumour models for personalized therapeutics in urological cancers. van de Merbel AF; van der Horst G; van der Pluijm G Nat Rev Urol; 2021 Jan; 18(1):33-45. PubMed ID: 33173206 [TBL] [Abstract][Full Text] [Related]
13. Animal models for modeling pancreatic cancer and novel drug discovery. Bisht S; Feldmann G Expert Opin Drug Discov; 2019 Feb; 14(2):127-142. PubMed ID: 30657339 [TBL] [Abstract][Full Text] [Related]
14. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Jung J; Seol HS; Chang S Cancer Res Treat; 2018 Jan; 50(1):1-10. PubMed ID: 28903551 [TBL] [Abstract][Full Text] [Related]
15. Testing PARP Inhibitors Using a Murine Xenograft Model. Makhov P; Naito S; Kolenko VM Methods Mol Biol; 2017; 1608():313-320. PubMed ID: 28695518 [TBL] [Abstract][Full Text] [Related]
16. Zebrafish Avatars towards Personalized Medicine-A Comparative Review between Avatar Models. Costa B; Estrada MF; Mendes RV; Fior R Cells; 2020 Jan; 9(2):. PubMed ID: 31991800 [TBL] [Abstract][Full Text] [Related]
17. Preclinical models of esophageal adenocarcinoma for drug development. Liu DS; Duong CP; Phillips WA; Clemons NJ Discov Med; 2016 Dec; 22(123):371-379. PubMed ID: 28147219 [TBL] [Abstract][Full Text] [Related]
18. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Morton JJ; Bird G; Keysar SB; Astling DP; Lyons TR; Anderson RT; Glogowska MJ; Estes P; Eagles JR; Le PN; Gan G; McGettigan B; Fernandez P; Padilla-Just N; Varella-Garcia M; Song JI; Bowles DW; Schedin P; Tan AC; Roop DR; Wang XJ; Refaeli Y; Jimeno A Oncogene; 2016 Jan; 35(3):290-300. PubMed ID: 25893296 [TBL] [Abstract][Full Text] [Related]
19. An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies. Macor P; Secco E; Zorzet S; Tripodo C; Celeghini C; Tedesco F Curr Pharm Des; 2008; 14(21):2023-39. PubMed ID: 18691113 [TBL] [Abstract][Full Text] [Related]
20. Murine models in mantle cell lymphoma. Zullo K; Amengual JE; O'Connor OA; Scotto L Best Pract Res Clin Haematol; 2012 Jun; 25(2):153-63. PubMed ID: 22687451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]