These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30848584)

  • 41. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling.
    Guimerà X; Moya A; Dorado AD; Illa X; Villa R; Gabriel D; Gamisans X; Gabriel G
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive and flexible inkjet printed SERS sensors on paper.
    Hoppmann EP; Yu WW; White IM
    Methods; 2013 Oct; 63(3):219-24. PubMed ID: 23872057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition.
    Kasi V; Sedaghat S; Alcaraz AM; Maruthamuthu MK; Heredia-Rivera U; Nejati S; Nguyen J; Rahimi R
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9697-9710. PubMed ID: 35142483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.
    Yang J; Kwak TJ; Zhang X; McClain R; Chang WJ; Gunasekaran S
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911378
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-Time Impedance Monitoring of Epithelial Cultures with Inkjet-Printed Interdigitated-Electrode Sensors.
    Mojena-Medina D; Hubl M; Bäuscher M; Jorcano JL; Ngo HD; Acedo P
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33049961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of a Silver-Based Thermistor on Flexible, Temperature-Sensitive Substrates Using a Low-Temperature Inkjet Printing Technique.
    Sui Y; Kreider LP; Bogie KM; Zorman CA
    IEEE Sens Lett; 2019 Jan; 3(2):. PubMed ID: 32083240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing the repeatability and sensitivity of low-cost PCB, pH-sensitive field-effect transistors.
    Ashton R; Silver CD; Bird TW; Coulson B; Pratt A; Johnson S
    Biosens Bioelectron; 2023 May; 227():115150. PubMed ID: 36821993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tailoring inkjet-printed PEDOT:PSS composition toward green, wearable device fabrication.
    Galliani M; Ferrari LM; Bouet G; Eglin D; Ismailova E
    APL Bioeng; 2023 Mar; 7(1):016101. PubMed ID: 36619686
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.
    Jiang H; Kaminska B
    ACS Nano; 2018 Apr; 12(4):3112-3125. PubMed ID: 29443493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inkjet-Printed Sulfide-Selective Electrode.
    Pol R; Moya A; Gabriel G; Gabriel D; Céspedes F; Baeza M
    Anal Chem; 2017 Nov; 89(22):12231-12236. PubMed ID: 29083863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tailoring Ink-Substrate Interactions via Thin Polymeric Layers for High-Resolution Printing.
    Matavž A; Bobnar V; Malič B
    Langmuir; 2017 Oct; 33(43):11893-11900. PubMed ID: 28895738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.
    Vuorinen T; Niittynen J; Kankkunen T; Kraft TM; Mäntysalo M
    Sci Rep; 2016 Oct; 6():35289. PubMed ID: 27752050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.
    Hondred JA; Stromberg LR; Mosher CL; Claussen JC
    ACS Nano; 2017 Oct; 11(10):9836-9845. PubMed ID: 28930433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensitivity enhancement of flexible gas sensors via conversion of inkjet-printed silver electrodes into porous gold counterparts.
    Fang Y; Akbari M; Hester JGD; Sydänheimo L; Ukkonen L; Tentzeris MM
    Sci Rep; 2017 Aug; 7(1):8988. PubMed ID: 28827611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the Sheet Resistance of Inkjet-Printed Ag-Layers on Flexible, Uncoated Paper Substrates Using Van-der-Pauw's Method.
    Zikulnig J; Roshanghias A; Rauter L; Hirschl C
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inkjet-printed perovskite distributed feedback lasers.
    Mathies F; Brenner P; Hernandez-Sosa G; Howard IA; Paetzold UW; Lemmer U
    Opt Express; 2018 Jan; 26(2):A144-A152. PubMed ID: 29401904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis.
    Zhang Q; Wang X; Decker V; Meyerhoff ME
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25616-25624. PubMed ID: 32426973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CNT-Based Inkjet-Printed RF Gas Sensor: Modification of Substrate Properties during the Fabrication Process.
    George J; Abdelghani A; Bahoumina P; Tantot O; Baillargeat D; Frigui K; Bila S; Hallil H; Dejous C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.