These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Roughness in the periodic potential induces absolute negative mobility in a driven Brownian ratchet. G R A; Barik D Phys Rev E; 2022 Oct; 106(4-1):044129. PubMed ID: 36397596 [TBL] [Abstract][Full Text] [Related]
4. Persistence of uphill anomalous transport in inhomogeneous media. Mulhern C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022906. PubMed ID: 24032900 [TBL] [Abstract][Full Text] [Related]
7. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation. Ai BQ; Wu JC J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017 [TBL] [Abstract][Full Text] [Related]
8. Paradoxical nature of negative mobility in the weak dissipation regime. Wiśniewski M; Spiechowicz J Chaos; 2023 Jun; 33(6):. PubMed ID: 37276563 [TBL] [Abstract][Full Text] [Related]
9. Brownian transport of finite size particles in a periodic channel coexisting with an energetic potential. Chen Q; Ai BQ; Xiong JW Chaos; 2014 Sep; 24(3):033119. PubMed ID: 25273199 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous rectification and absolute negative mobility of inertial Brownian particles induced by Gaussian potentials in steady laminar flows. Wu JC; An M; Ma WG Soft Matter; 2019 Sep; 15(36):7187-7194. PubMed ID: 31464332 [TBL] [Abstract][Full Text] [Related]
11. Indirect control of transport and interaction-induced negative mobility in an overdamped system of two coupled particles. Januszewski M; Łuczka J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051117. PubMed ID: 21728500 [TBL] [Abstract][Full Text] [Related]
12. Giant negative mobility of inertial particles caused by the periodic potential in steady laminar flows. Ai BQ; Zhu WJ; He YF; Zhong WR J Chem Phys; 2018 Oct; 149(16):164903. PubMed ID: 30384762 [TBL] [Abstract][Full Text] [Related]
13. Particle separation induced by triangle obstacles in a straight channel. Wu JC; Dong TW; Jiang GW; An M; Ai BQ J Chem Phys; 2020 Jan; 152(3):034901. PubMed ID: 31968953 [TBL] [Abstract][Full Text] [Related]
14. Strong-chaos-caused negative mobility in a periodic substrate potential. Luo Y; Zeng C; Ai BQ Phys Rev E; 2020 Oct; 102(4-1):042114. PubMed ID: 33212680 [TBL] [Abstract][Full Text] [Related]
15. Anomalous mobility of Brownian particles in a tilted symmetric sawtooth potential. Haljas A; Mankin R; Sauga A; Reiter E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041107. PubMed ID: 15600397 [TBL] [Abstract][Full Text] [Related]
16. Negative mobility induced by colored thermal fluctuations. Kostur M; Luczka J; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051121. PubMed ID: 20364961 [TBL] [Abstract][Full Text] [Related]
17. Brownian motors in the microscale domain: enhancement of efficiency by noise. Spiechowicz J; Hänggi P; Łuczka J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032104. PubMed ID: 25314392 [TBL] [Abstract][Full Text] [Related]
18. Absolute negative mobility induced by potential phase modulation. Dandogbessi BS; Kenfack A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062903. PubMed ID: 26764770 [TBL] [Abstract][Full Text] [Related]
19. Entropic particle transport in periodic channels. Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863 [TBL] [Abstract][Full Text] [Related]
20. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving. Marchenko IG; Marchenko II; Zhiglo AV Phys Rev E; 2018 Jan; 97(1-1):012121. PubMed ID: 29448473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]