These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30848616)

  • 1. Charge Order in the Holstein Model on a Honeycomb Lattice.
    Zhang YX; Chiu WT; Costa NC; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2019 Feb; 122(7):077602. PubMed ID: 30848616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons.
    Chen C; Xu XY; Meng ZY; Hohenadler M
    Phys Rev Lett; 2019 Feb; 122(7):077601. PubMed ID: 30848656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetism and Charge Order in the Honeycomb Lattice.
    Costa NC; Seki K; Sorella S
    Phys Rev Lett; 2021 Mar; 126(10):107205. PubMed ID: 33784139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon Dispersion and the Competition between Pairing and Charge Order.
    Costa NC; Blommel T; Chiu WT; Batrouni G; Scalettar RT
    Phys Rev Lett; 2018 May; 120(18):187003. PubMed ID: 29775370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Monte Carlo Simulation of the Chiral Heisenberg Gross-Neveu-Yukawa Phase Transition with a Single Dirac Cone.
    Lang TC; Läuchli AM
    Phys Rev Lett; 2019 Sep; 123(13):137602. PubMed ID: 31697507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic and Deconfined Quantum Criticality in Dirac Systems.
    Liu ZH; Vojta M; Assaad FF; Janssen L
    Phys Rev Lett; 2022 Feb; 128(8):087201. PubMed ID: 35275685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimerized solids and resonating plaquette order in SU(N)-Dirac fermions.
    Lang TC; Meng ZY; Muramatsu A; Wessel S; Assaad FF
    Phys Rev Lett; 2013 Aug; 111(6):066401. PubMed ID: 23971594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-range correlations and cooling of ultracold fermions in the honeycomb lattice.
    Tang B; Paiva T; Khatami E; Rigol M
    Phys Rev Lett; 2012 Nov; 109(20):205301. PubMed ID: 23215498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between antiferromagnetic and charge-density-wave order in the half-filled Hubbard-Holstein model.
    Nowadnick EA; Johnston S; Moritz B; Scalettar RT; Devereaux TP
    Phys Rev Lett; 2012 Dec; 109(24):246404. PubMed ID: 23368352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological Quantum Transition Driven by Charge-Phonon Coupling in the Haldane Chern Insulator.
    Cangemi LM; Mishchenko AS; Nagaosa N; Cataudella V; De Filippis G
    Phys Rev Lett; 2019 Jul; 123(4):046401. PubMed ID: 31491257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spin-orbital-entangled quantum liquid on a honeycomb lattice.
    Kitagawa K; Takayama T; Matsumoto Y; Kato A; Takano R; Kishimoto Y; Bette S; Dinnebier R; Jackeli G; Takagi H
    Nature; 2018 Feb; 554(7692):341-345. PubMed ID: 29446382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valence Bond Orders at Charge Neutrality in a Possible Two-Orbital Extended Hubbard Model for Twisted Bilayer Graphene.
    Da Liao Y; Meng ZY; Xu XY
    Phys Rev Lett; 2019 Oct; 123(15):157601. PubMed ID: 31702323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions.
    Meng ZY; Lang TC; Wessel S; Assaad FF; Muramatsu A
    Nature; 2010 Apr; 464(7290):847-51. PubMed ID: 20376143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.
    Owerre SA; Nsofini J
    J Phys Condens Matter; 2017 Nov; 29(45):455802. PubMed ID: 29049033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first theoretical realization of honeycomb topological magnon insulator.
    Owerre SA
    J Phys Condens Matter; 2016 Sep; 28(38):386001. PubMed ID: 27437569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic Spin, Charge, and Lattice Waves in Vanadium Ditelluride.
    Won D; Kiem DH; Cho H; Kim D; Kim Y; Jeong MY; Seo C; Kim J; Park JG; Han MJ; Yang H; Cho S
    Adv Mater; 2020 Mar; 32(11):e1906578. PubMed ID: 32027057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confinement transition of ℤ
    Gazit S; Assaad FF; Sachdev S; Vishwanath A; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E6987-E6995. PubMed ID: 29987049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the spin liquid state of the Hubbard model on a honeycomb lattice.
    Clark BK; Abanin DA; Sondhi SL
    Phys Rev Lett; 2011 Aug; 107(8):087204. PubMed ID: 21929202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice.
    Huang YZ; Xi B; Chen X; Li W; Wang ZC; Su G
    Phys Rev E; 2016 Jun; 93(6):062110. PubMed ID: 27415211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagram of interacting spinless fermions on the honeycomb lattice.
    Capponi S
    J Phys Condens Matter; 2017 Feb; 29(4):043002. PubMed ID: 27875325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.