These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30848884)

  • 1. Self-Assembled Chiral Nanoparticle Superstructures and Identification of Their Collective Optical Activity from Ligand Asymmetry.
    Mao X; Wang Z; Zeng D; Cao H; Zhan Y; Wang Y; Li Q; Shen Y; Wang J
    ACS Nano; 2019 Mar; 13(3):2879-2887. PubMed ID: 30848884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity.
    Shi L; Zhu L; Guo J; Zhang L; Shi Y; Zhang Y; Hou K; Zheng Y; Zhu Y; Lv J; Liu S; Tang Z
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15397-15401. PubMed ID: 29057591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles.
    Liang Z; Bernardino K; Han J; Zhou Y; Sun K; de Moura AF; Kotov NA
    Faraday Discuss; 2016 Oct; 191():141-157. PubMed ID: 27458774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Nano-superstructures and Their Optical Properties.
    Qi F; Jeong KJ; Gong J; Tang Z
    Acc Chem Res; 2022 Sep; 55(17):2425-2438. PubMed ID: 35977155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations.
    Ma L; Liu Y; Han C; Movsesyan A; Li P; Li H; Tang P; Yuan Y; Jiang S; Ni W; Yan H; Govorov AO; Wang ZM; Lan X
    Nano Lett; 2022 Jun; 22(12):4784-4791. PubMed ID: 35649094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Surface Mediated Supramolecular Chiral Phenomenon for Recognition of l- and d-Cysteine.
    Wang J; Zhang SS; Xu X; Fei KX; Peng YX
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30544706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of surface ligands on the optical activity of mercury sulfide nanoparticles.
    Kuno J; Kawai T; Nakashima T
    Nanoscale; 2017 Aug; 9(32):11590-11595. PubMed ID: 28770926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the Metal-Ligand Interface on the Chiroptical Activity of Cysteine-Protected Nanoparticles.
    Rodríguez-Zamora P; Cordero-Silis CA; Garza-Ramos GR; Salazar-Angeles B; Luque-Ceballos JC; Fabila JC; Buendía F; Paz-Borbón LO; Díaz G; Garzón IL
    Small; 2021 Jul; 17(27):e2004288. PubMed ID: 33506610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.
    Wen T; Wang HF; Li MC; Ho RM
    Acc Chem Res; 2017 Apr; 50(4):1011-1021. PubMed ID: 28257188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer pattern-induced self-assembly of inorganic nanoparticles.
    Wang J; Zhu B; Wang Y; Hao Y; Zhang J; Li Z
    Soft Matter; 2021 Dec; 18(1):97-106. PubMed ID: 34870666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly Mechanism and Chiral Transfer in CuO Superstructures.
    Zhang J; Vallée RAL; Kochovski Z; Zhang W; Shen C; Bertram F; Pinna N
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202305353. PubMed ID: 37186081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inversion of Optical Activity in the Synthesis of Mercury Sulfide Nanoparticles: Role of Ligand Coordination.
    Kuno J; Imamura Y; Katouda M; Tashiro M; Kawai T; Nakashima T
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12022-12026. PubMed ID: 30054963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies.
    Hu T; Isaacoff BP; Bahng JH; Hao C; Zhou Y; Zhu J; Li X; Wang Z; Liu S; Xu C; Biteen JS; Kotov NA
    Nano Lett; 2014 Dec; 14(12):6799-810. PubMed ID: 25400100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.
    Sharma A; Mori T; Lee HC; Worden M; Bidwell E; Hegmann T
    ACS Nano; 2014 Dec; 8(12):11966-76. PubMed ID: 25383947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing Gold Nanoparticles into Free-Standing Honeycomb-Like Ordered Mesoporous Superstructures.
    Wu X; Chen J; Xie L; Li J; Shi J; Luo S; Zhao X; Deng K; He D; He J; Luo J; Wang Z; Quan Z
    Small; 2019 Aug; 15(31):e1901304. PubMed ID: 31120188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Guided Plasmonic Helix with Switchable Chirality.
    Lan X; Liu T; Wang Z; Govorov AO; Yan H; Liu Y
    J Am Chem Soc; 2018 Sep; 140(37):11763-11770. PubMed ID: 30129752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent chiro-optical properties of CsPbBr
    Tabassum N; Georgieva ZN; Debnath GH; Waldeck DH
    Nanoscale; 2023 Feb; 15(5):2143-2151. PubMed ID: 36633325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Transfer and Evolution in Cysteine Induced Cobalt Superstructures.
    Wang Z; Yin X; Ba J; Li J; Wei Y; Wang Y
    Small; 2024 Apr; ():e2402058. PubMed ID: 38607256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Chiral Nanoparticles Superstructures and Identification of Their Collective Optical Activity from Ligand Asymmetry.
    Mao X; Zhan Y; Wang Y; Li Q; Wang Z; Zeng D; Cao H; Shen Y; Wang J
    ACS Nano; 2020 Jan; 14(1):1208. PubMed ID: 31850737
    [No Abstract]   [Full Text] [Related]  

  • 20. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects.
    Mokashi-Punekar S; Zhou Y; Brooks SC; Rosi NL
    Adv Mater; 2020 Oct; 32(41):e1905975. PubMed ID: 31815327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.