These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30848884)

  • 21. The study on size dependent dipole-dipole interaction in the self-assembly of twisting nanoribbons with circular polarization activation.
    Yan B; Ma C; Lv B; Zhu J; Li Y; Cai P; Gao F; Ye Z; Sui C; Cheng G; Lin Q; Wu X; Shi Y
    Nanotechnology; 2019 Sep; 30(38):385602. PubMed ID: 31216513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.
    Choi JK; Haynie BE; Tohgha U; Pap L; Elliott KW; Leonard BM; Dzyuba SV; Varga K; Kubelka J; Balaz M
    ACS Nano; 2016 Mar; 10(3):3809-15. PubMed ID: 26938741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence.
    Cheng J; Hao J; Liu H; Li J; Li J; Zhu X; Lin X; Wang K; He T
    ACS Nano; 2018 Jun; 12(6):5341-5350. PubMed ID: 29791135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking beta-sheet proteins with anisotropic electrical transport.
    Yan Y; Wang R; Qiu X; Wei Z
    J Am Chem Soc; 2010 Sep; 132(34):12006-12. PubMed ID: 20701286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Helical assembly induced by hydrogen bonding from chiral carboxylic acids based on perylene bisimides.
    Lu X; Guo Z; Sun C; Tian H; Zhu W
    J Phys Chem B; 2011 Sep; 115(37):10871-6. PubMed ID: 21830806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity.
    Yan W; Xu L; Xu C; Ma W; Kuang H; Wang L; Kotov NA
    J Am Chem Soc; 2012 Sep; 134(36):15114-21. PubMed ID: 22900978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and application of inorganic nanoparticle superstructures: current status and future challenges.
    Gao Y; Tang Z
    Small; 2011 Aug; 7(15):2133-46. PubMed ID: 21626691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots.
    Kneer LM; Roller EM; Besteiro LV; Schreiber R; Govorov AO; Liedl T
    ACS Nano; 2018 Sep; 12(9):9110-9115. PubMed ID: 30188691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical response of electro-tuneable 3D superstructures of plasmonic nanoparticles self-assembling on transparent columnar electrodes.
    Sikdar D; Weir H; Kornyshev AA
    Opt Express; 2019 Sep; 27(19):26483-26498. PubMed ID: 31674529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chiral perylene diimides: building blocks for ionic self-assembly.
    Echue G; Lloyd-Jones GC; Faul CF
    Chemistry; 2015 Mar; 21(13):5118-28. PubMed ID: 25689392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of anisotropic nanoparticles into functional superstructures.
    Deng K; Luo Z; Tan L; Quan Z
    Chem Soc Rev; 2020 Jul; ():. PubMed ID: 32692337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable optical activities in chiral transition metal oxide nanoparticles.
    Xiao S; Liang J; Li J; Cheng J; Zhu X; He T
    Nanoscale; 2022 Oct; 14(41):15414-15421. PubMed ID: 36218542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules.
    Das A; Kundelev EV; Vedernikova AA; Cherevkov SA; Danilov DV; Koroleva AV; Zhizhin EV; Tsypkin AN; Litvin AP; Baranov AV; Fedorov AV; Ushakova EV; Rogach AL
    Light Sci Appl; 2022 Apr; 11(1):92. PubMed ID: 35410998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembled inorganic chiral superstructures.
    Lv J; Gao X; Han B; Zhu Y; Hou K; Tang Z
    Nat Rev Chem; 2022 Feb; 6(2):125-145. PubMed ID: 37117298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation of collective optical activity in one-dimensional plasmonic assembly.
    Zhu Z; Liu W; Li Z; Han B; Zhou Y; Gao Y; Tang Z
    ACS Nano; 2012 Mar; 6(3):2326-32. PubMed ID: 22324310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circular dichroism and UV-Vis absorption spectroscopic monitoring of production of chiral silver nanoparticles templated by guanosine 5'-monophosphate.
    Pandoli O; Massi A; Cavazzini A; Spada GP; Cui D
    Analyst; 2011 Sep; 136(18):3713-9. PubMed ID: 21796288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles.
    Lu JE; Yang CH; Wang H; Yam C; Yu ZG; Chen S
    Nanoscale; 2018 Aug; 10(30):14586-14593. PubMed ID: 30027984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-dependent optical activity inversion of chiral DNA-silica assemblies.
    Liu B; Cao Y; Duan Y; Che S
    Chemistry; 2013 Nov; 19(48):16382-8. PubMed ID: 24136856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.