These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30848886)
1. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes. Takeuchi T; Iizumi Y; Yudasaka M; Kizaka-Kondoh S; Okazaki T Bioconjug Chem; 2019 May; 30(5):1323-1330. PubMed ID: 30848886 [TBL] [Abstract][Full Text] [Related]
2. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes. Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494 [TBL] [Abstract][Full Text] [Related]
3. Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Shaik AS; Shaik AP; Bammidi VK; Al Faraj A Toxicol Mech Methods; 2019 May; 29(4):233-243. PubMed ID: 30480460 [TBL] [Abstract][Full Text] [Related]
4. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Campagnolo L; Massimiani M; Palmieri G; Bernardini R; Sacchetti C; Bergamaschi A; Vecchione L; Magrini A; Bottini M; Pietroiusti A Part Fibre Toxicol; 2013 Jun; 10():21. PubMed ID: 23742083 [TBL] [Abstract][Full Text] [Related]
5. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Iizumi Y; Yudasaka M; Kim J; Sakakita H; Takeuchi T; Okazaki T Sci Rep; 2018 Apr; 8(1):6272. PubMed ID: 29674647 [TBL] [Abstract][Full Text] [Related]
6. Cancer antibody enhanced real time imaging cell probes--a novel theranostic tool using polymer linked carbon nanotubes and quantum dots. Brakmane G; Madani SY; Seifalian A Anticancer Agents Med Chem; 2013 Jun; 13(5):821-32. PubMed ID: 23537047 [TBL] [Abstract][Full Text] [Related]
7. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Bhirde AA; Patel S; Sousa AA; Patel V; Molinolo AA; Ji Y; Leapman RD; Gutkind JS; Rusling JF Nanomedicine (Lond); 2010 Dec; 5(10):1535-46. PubMed ID: 21143032 [TBL] [Abstract][Full Text] [Related]
8. Effects of the interaction of single-walled carbon nanotubes with 4-nonylphenol on their in vitro toxicity. Caballero-Díaz E; Guzmán-Ruiz R; Malagón MM; Simonet BM; Valcárcel M J Hazard Mater; 2014 Jun; 275():107-15. PubMed ID: 24853140 [TBL] [Abstract][Full Text] [Related]
9. Carbon nanotubes for biomedical imaging: the recent advances. Gong H; Peng R; Liu Z Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130 [TBL] [Abstract][Full Text] [Related]
10. Recent Progress of Near-Infrared Fluorescence in vivo Bioimaging in the Second and Third Biological Window. Kamimura M Anal Sci; 2021 May; 37(5):691-697. PubMed ID: 33455967 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent sp Mandal AK; Wu X; Ferreira JS; Kim M; Powell LR; Kwon H; Groc L; Wang Y; Cognet L Sci Rep; 2020 Mar; 10(1):5286. PubMed ID: 32210295 [TBL] [Abstract][Full Text] [Related]
12. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. Lee H J Mol Graph Model; 2017 Aug; 75():1-8. PubMed ID: 28501530 [TBL] [Abstract][Full Text] [Related]
14. Streptavidin-Conjugated Oxygen-Doped Single-Walled Carbon Nanotubes as Near-Infrared Labels for Immunoassays. Kojima K; Iizumi Y; Zhang M; Okazaki T Langmuir; 2022 Feb; 38(4):1509-1513. PubMed ID: 35029992 [TBL] [Abstract][Full Text] [Related]
15. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Vlasova II; Vakhrusheva TV; Sokolov AV; Kostevich VA; Gusev AA; Gusev SA; Melnikova VI; Lobach AS Toxicol Appl Pharmacol; 2012 Oct; 264(1):131-42. PubMed ID: 22884993 [TBL] [Abstract][Full Text] [Related]
16. Antibody-Conjugated Gel-Coated Single-Walled Carbon Nanotubes as Photothermal Agents. Nagai Y; Nakamura K; Ohno J; Kawaguchi M; Fujigaya T ACS Appl Bio Mater; 2021 Jun; 4(6):5049-5056. PubMed ID: 35007053 [TBL] [Abstract][Full Text] [Related]
17. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes. Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826 [TBL] [Abstract][Full Text] [Related]
18. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. Levin N; Hendler-Neumark A; Kamber D; Bisker G J Colloid Interface Sci; 2024 Jun; 664():650-666. PubMed ID: 38490040 [TBL] [Abstract][Full Text] [Related]
19. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. Sacchetti C; Motamedchaboki K; Magrini A; Palmieri G; Mattei M; Bernardini S; Rosato N; Bottini N; Bottini M ACS Nano; 2013 Mar; 7(3):1974-89. PubMed ID: 23413928 [TBL] [Abstract][Full Text] [Related]