BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30848908)

  • 21. Understanding the intermolecular Diels-Alder cycloaddition promotion: Activation strain model/energy decomposition analysis model and conceptual density functional theory viewpoints.
    Merzoud L; Guégan F; Chermette H; Morell C
    J Comput Chem; 2021 Jul; 42(19):1364-1372. PubMed ID: 34056727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactivity Analysis of the [2 + 2] Cycloaddition between Group-6 ≡ Group-14 Triple-Bonded Complexes and Acetylene: Insights from Theoretical Studies.
    Wu CS; Su MD
    Inorg Chem; 2023 Oct; 62(40):16388-16400. PubMed ID: 37768726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the Reactivity of Planar Polycyclic Aromatic Hydrocarbons: Towards the Graphene Limit.
    García-Rodeja Y; Solà M; Fernández I
    Chemistry; 2016 Jul; 22(30):10572-80. PubMed ID: 27304921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxophosphonium-Alkyne Cycloaddition Reactions: Reversible Formation of 1,2-Oxaphosphetes and Six-membered Phosphorus Heterocycles.
    Löwe P; Feldt M; Wünsche MA; Wilm LFB; Dielmann F
    J Am Chem Soc; 2020 May; 142(21):9818-9826. PubMed ID: 32364716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the reactivity and selectivity of Diels-Alder reactions involving furans.
    Alves TV; Fernández I
    Org Biomol Chem; 2023 Oct; 21(38):7767-7775. PubMed ID: 37698053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electron-demand dienes: activation barriers and distortion/interaction analysis.
    Liu F; Paton RS; Kim S; Liang Y; Houk KN
    J Am Chem Soc; 2013 Oct; 135(41):15642-9. PubMed ID: 24044412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of reactivity patterns in Diels-Alder reactions of cyclopentadiene, cyclohexadiene, and cycloheptadiene with symmetrical and unsymmetrical dienophiles.
    Levandowski BJ; Houk KN
    J Org Chem; 2015 Apr; 80(7):3530-7. PubMed ID: 25741891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the Critical Effect of the Metal (Mo vs. W) on the [3+2] Cycloaddition Reaction of M3 S4 Clusters with Alkynes: Insights from Experiment and Theory.
    Bustelo E; Gushchin AL; Fernández-Trujillo MJ; Basallote MG; Algarra AG
    Chemistry; 2015 Oct; 21(42):14823-33. PubMed ID: 26383190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactivity for the Diels-Alder reaction of cumulenes: a distortion-interaction analysis along the reaction pathway.
    Liu S; Lei Y; Qi X; Lan Y
    J Phys Chem A; 2014 Apr; 118(14):2638-45. PubMed ID: 24576078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the Lewis Acid/Base Pairs on the Reactivity of Geminal E-CH
    Cabrera-Trujillo JJ; Fernández I
    Chemistry; 2018 Dec; 24(67):17823-17831. PubMed ID: 30256467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the Reactivity of Ion-Encapsulated Fullerenes.
    García-Rodeja Y; Solà M; Bickelhaupt FM; Fernández I
    Chemistry; 2017 Aug; 23(46):11030-11036. PubMed ID: 28485506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model.
    Fernández I; Bickelhaupt FM
    Chem Asian J; 2016 Dec; 11(23):3297-3304. PubMed ID: 27863108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.
    Gold B; Dudley GB; Alabugin IV
    J Am Chem Soc; 2013 Jan; 135(4):1558-69. PubMed ID: 23272641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of an α-Methyl Substituent on the Dienophile on Diels-Alder
    Larrañaga O; de Cózar A
    ChemistryOpen; 2019 Jan; 8(1):49-57. PubMed ID: 30652065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. η
    Portela S; Fernández I
    Chem Asian J; 2023 Feb; 18(3):e202201214. PubMed ID: 36515097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hunt for reactive alkynes in bio-orthogonal click reactions: insights from mechanochemical and conceptual DFT calculations.
    Bettens T; Alonso M; Geerlings P; De Proft F
    Chem Sci; 2019 Dec; 11(5):1431-1439. PubMed ID: 34123268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of [3+2] cycloaddition of alkynes to the [Mo3 S4 (acac)3 (py)3 ][PF6 ] cluster.
    Pino-Chamorro JÁ; Gushchin AL; Fernández-Trujillo MJ; Hernández-Molina R; Vicent C; Algarra AG; Basallote MG
    Chemistry; 2015 Feb; 21(7):2835-44. PubMed ID: 25529428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constraint of a ruthenium-carbon triple bond to a five-membered ring.
    Zhuo Q; Zhang H; Hua Y; Kang H; Zhou X; Lin X; Chen Z; Lin J; Zhuo K; Xia H
    Sci Adv; 2018 Jun; 4(6):eaat0336. PubMed ID: 29942859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting and Understanding the Reactivity of Aza[60]fullerenes.
    García-Rodeja Y; Solà M; Fernández I
    J Org Chem; 2017 Jan; 82(1):754-758. PubMed ID: 27977179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling polar Diels-Alder reactions with conceptual DFT analysis and the distortion/interaction model.
    Sarotti AM
    Org Biomol Chem; 2014 Jan; 12(1):187-99. PubMed ID: 24085334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.