BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30849123)

  • 1. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing.
    Takeoka Y; Matsumoto K; Taniguchi D; Tsuchiya T; Machino R; Moriyama M; Oyama S; Tetsuo T; Taura Y; Takagi K; Yoshida T; Elgalad A; Matsuo N; Kunizaki M; Tobinaga S; Nonaka T; Hidaka S; Yamasaki N; Nakayama K; Nagayasu T
    PLoS One; 2019; 14(3):e0211339. PubMed ID: 30849123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing.
    Taniguchi D; Matsumoto K; Tsuchiya T; Machino R; Takeoka Y; Elgalad A; Gunge K; Takagi K; Taura Y; Hatachi G; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Interact Cardiovasc Thorac Surg; 2018 May; 26(5):745-752. PubMed ID: 29346562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
    Machino R; Matsumoto K; Taniguchi D; Tsuchiya T; Takeoka Y; Taura Y; Moriyama M; Tetsuo T; Oyama S; Takagi K; Miyazaki T; Hatachi G; Doi R; Shimoyama K; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Adv Healthc Mater; 2019 Apr; 8(7):e1800983. PubMed ID: 30632706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction.
    Kim IG; Wu Y; Park SA; Cho H; Choi JJ; Kwon SK; Shin JW; Chung EJ
    Tissue Eng Part A; 2019 Nov; 25(21-22):1478-1492. PubMed ID: 30799779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.
    Itoh M; Nakayama K; Noguchi R; Kamohara K; Furukawa K; Uchihashi K; Toda S; Oyama J; Node K; Morita S
    PLoS One; 2015; 10(9):e0136681. PubMed ID: 26325298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth.
    Soliman S; Laurent J; Kalenjian L; Burnette K; Hedberg B; La Francesca S
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):324-331. PubMed ID: 29717817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of diaphragm with bio-3D cellular patch.
    Zhang XY; Yanagi Y; Sheng Z; Nagata K; Nakayama K; Taguchi T
    Biomaterials; 2018 Jun; 167():1-14. PubMed ID: 29550580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration.
    Zhang Q; Nguyen PD; Shi S; Burrell JC; Cullen DK; Le AD
    Sci Rep; 2018 Apr; 8(1):6634. PubMed ID: 29700345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human lung microvascular endothelial cells as potential alternatives to human umbilical vein endothelial cells in bio-3D-printed trachea-like structures.
    Taniguchi D; Matsumoto K; Machino R; Takeoka Y; Elgalad A; Taura Y; Oyama S; Tetsuo T; Moriyama M; Takagi K; Kunizaki M; Tsuchiya T; Miyazaki T; Hatachi G; Matsuo N; Nakayama K; Nagayasu T
    Tissue Cell; 2020 Apr; 63():101321. PubMed ID: 32223949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane.
    Chen X; Chen D; Ai X; Hu R; Zhang H
    Biomed Mater; 2020 Jul; 15(5):055010. PubMed ID: 32392542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of the ureter using a scaffold-free live-cell structure created with the bio-three-dimensional printing technique.
    Takagi K; Matsumoto K; Taniguchi D; Machino R; Uchida F; Hara R; Oishi K; Yamane Y; Iwatake M; Eguchi M; Mochizuki Y; Nakayama K; Nagayasu T
    Acta Biomater; 2023 Jul; 165():102-110. PubMed ID: 36243376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration.
    Zhang M; Lin R; Wang X; Xue J; Deng C; Feng C; Zhuang H; Ma J; Qin C; Wan L; Chang J; Wu C
    Sci Adv; 2020 Mar; 6(12):eaaz6725. PubMed ID: 32219170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).
    Wu PK; Ringeisen BR
    Biofabrication; 2010 Mar; 2(1):014111. PubMed ID: 20811126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assessment of electrospun polyamide-6 scaffolds for esophageal tissue engineering.
    Zhuravleva M; Gilazieva Z; Grigoriev TE; Shepelev AD; Kh Tenchurin T; Kamyshinsky R; Krasheninnikov SV; Orlov S; Caralogli G; Archipova S; Holterman MJ; Mavlikeev M; Deev RV; Chvalun SN; Macchiarini P
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):253-268. PubMed ID: 29603873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head-an in vitro study.
    Wang JQ; Jiang BJ; Guo WJ; Zhao YM
    J Orthop Surg Res; 2019 Apr; 14(1):102. PubMed ID: 30975173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascularized 3D printed scaffolds for promoting bone regeneration.
    Yan Y; Chen H; Zhang H; Guo C; Yang K; Chen K; Cheng R; Qian N; Sandler N; Zhang YS; Shen H; Qi J; Cui W; Deng L
    Biomaterials; 2019 Jan; 190-191():97-110. PubMed ID: 30415019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.