These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interplay of the fungal sumoylation network for control of multicellular development. Harting R; Bayram O; Laubinger K; Valerius O; Braus GH Mol Microbiol; 2013 Dec; 90(5):1125-45. PubMed ID: 24279728 [TBL] [Abstract][Full Text] [Related]
3. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer. Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480 [TBL] [Abstract][Full Text] [Related]
4. Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Wong KH; Todd RB; Oakley BR; Oakley CE; Hynes MJ; Davis MA Fungal Genet Biol; 2008 May; 45(5):728-37. PubMed ID: 18262811 [TBL] [Abstract][Full Text] [Related]
5. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Lamoliatte F; Bonneil E; Durette C; Caron-Lizotte O; Wildemann D; Zerweck J; Wenshuk H; Thibault P Mol Cell Proteomics; 2013 Sep; 12(9):2536-50. PubMed ID: 23750026 [TBL] [Abstract][Full Text] [Related]
6. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. Ingole KD; Dahale SK; Bhattacharjee S J Proteomics; 2021 Feb; 232():104054. PubMed ID: 33238213 [TBL] [Abstract][Full Text] [Related]
8. A proteome-wide approach identifies sumoylated substrate proteins in yeast. Panse VG; Hardeland U; Werner T; Kuster B; Hurt E J Biol Chem; 2004 Oct; 279(40):41346-51. PubMed ID: 15292183 [TBL] [Abstract][Full Text] [Related]
9. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms. Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive compilation of SUMO proteomics. Hendriks IA; Vertegaal AC Nat Rev Mol Cell Biol; 2016 Sep; 17(9):581-95. PubMed ID: 27435506 [TBL] [Abstract][Full Text] [Related]
11. Large-Scale Purification of Small Ubiquitin-Like Modifier (SUMO)-Modified Proteins from Nie M; Boddy MN Cold Spring Harb Protoc; 2017 Mar; 2017(3):pdb.prot091603. PubMed ID: 28250213 [TBL] [Abstract][Full Text] [Related]
12. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Galisson F; Mahrouche L; Courcelles M; Bonneil E; Meloche S; Chelbi-Alix MK; Thibault P Mol Cell Proteomics; 2011 Feb; 10(2):M110.004796. PubMed ID: 21098080 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Sumoylation. Breucker J; Pichler A Methods Mol Biol; 2019; 1934():223-233. PubMed ID: 31256382 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Protein Sumoylation. Sarge KD Curr Protoc Protein Sci; 2016 Feb; 83():14.8.1-14.8.8. PubMed ID: 26836406 [TBL] [Abstract][Full Text] [Related]
15. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Hendriks IA; Lyon D; Young C; Jensen LJ; Vertegaal AC; Nielsen ML Nat Struct Mol Biol; 2017 Mar; 24(3):325-336. PubMed ID: 28112733 [TBL] [Abstract][Full Text] [Related]
16. The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A.nidulans and human. Tüncher A; Spröte P; Gehrke A; Brakhage AA J Mol Biol; 2005 Sep; 352(3):517-33. PubMed ID: 16098534 [TBL] [Abstract][Full Text] [Related]
17. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans. Chu XL; Feng MG; Ying SH Curr Genet; 2016 Feb; 62(1):191-201. PubMed ID: 26328806 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive site-specific SUMOylation proteomics in Arabidopsis. Sang T; Xu Y; Qin G; Zhao S; Hsu CC; Wang P Nat Plants; 2024 Sep; 10(9):1330-1342. PubMed ID: 39294263 [TBL] [Abstract][Full Text] [Related]
19. Label-Free Identification and Quantification of SUMO Target Proteins. Hendriks IA; Vertegaal AC Methods Mol Biol; 2016; 1475():171-93. PubMed ID: 27631806 [TBL] [Abstract][Full Text] [Related]
20. Identification of Substrates of Protein-Group SUMOylation. Psakhye I; Jentsch S Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]