These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30849566)

  • 1. Simultaneous removal of Hg
    Zhang H; Zhang D; Wang J; Xu W; Yang D; Jiao T; Zhang W; Liang P
    J Hazard Mater; 2019 Jun; 371():123-129. PubMed ID: 30849566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMn
    Wang Z; Liu J; Yang Y; Yu Y; Yan X; Zhang Z
    J Hazard Mater; 2020 Apr; 388():121738. PubMed ID: 31812479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo
    Li J; Chen S; Zhu X; She X; Liu T; Zhang H; Komarneni S; Yang D; Yao X
    Adv Sci (Weinh); 2017 Dec; 4(12):1700345. PubMed ID: 29270344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of mercury speciation on its removal from water by activated carbon and organoclay.
    Gai K; Avellan A; Hoelen TP; Lopez-Linares F; Hatakeyama ES; Lowry GV
    Water Res; 2019 Jun; 157():600-609. PubMed ID: 31003075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas.
    Zhou J; Hou W; Qi P; Gao X; Luo Z; Cen K
    Environ Sci Technol; 2013 Sep; 47(17):10056-62. PubMed ID: 23931010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Zou S; Liao Y; Xiong S; Huang N; Geng Y; Yang S
    Environ Sci Technol; 2017 Mar; 51(6):3426-3434. PubMed ID: 28226212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of ultra-low volatile mercury concentrations in sulfur-rich gases and liquids.
    Brombach CC; Pichler T
    Talanta; 2019 Jul; 199():277-284. PubMed ID: 30952258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Sulfur Trioxide (SO
    Yang Z; Li H; Qu W; Zhang M; Feng Y; Zhao J; Yang J; Shih K
    Environ Sci Technol; 2019 Mar; 53(6):3250-3257. PubMed ID: 30802042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CeO
    Chalkidis A; Jampaiah D; Amin MH; Hartley PG; Sabri YM; Bhargava SK
    Langmuir; 2019 Jun; 35(25):8246-8256. PubMed ID: 31132272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal.
    Yuan Y; Xu H; Liu W; Chen L; Quan Z; Liu P; Qu Z; Yan N
    J Colloid Interface Sci; 2019 Feb; 536():431-439. PubMed ID: 30384049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.
    Saha A; Abram DN; Kuhl KP; Paradis J; Crawford JL; Sasmaz E; Chang R; Jaramillo TF; Wilcox J
    Environ Sci Technol; 2013 Dec; 47(23):13695-701. PubMed ID: 24256554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide.
    Wang LJ; Fan HL; Shangguan J; Croiset E; Chen Z; Wang H; Mi J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21167-77. PubMed ID: 25382853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of CO
    Xuan J; Wang C; Zhang L; Cui Q; Wang H
    Environ Technol; 2022 May; 43(13):2069-2079. PubMed ID: 33461437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.
    Izquierdo MT; Ballestero D; Juan R; García-Díez E; Rubio B; Ruiz C; Pino MR
    J Hazard Mater; 2011 Oct; 193():304-10. PubMed ID: 21855215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadium silicate (EVS)-supported silver nanoparticles: A novel catalytic sorbent for elemental mercury removal from flue gas.
    Zhou Z; Cao T; Liu X; Xu S; Xu Z; Xu M
    J Hazard Mater; 2019 Aug; 375():1-8. PubMed ID: 31030075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Sonochemical Treatment on Thermal Stability, Elemental Mercury (Hg
    Altaf AR; Teng H; Gang L; Adewuyi YG; Zheng M
    ACS Omega; 2021 Sep; 6(37):23913-23923. PubMed ID: 34568670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the desulfurization and regeneration properties through the control of pore structures of the Zn-Ti-based H2S removal sorbents.
    Jung SY; Jun HK; Lee SJ; Lee TJ; Ryu CK; Kim JC
    Environ Sci Technol; 2005 Dec; 39(23):9324-30. PubMed ID: 16382959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.
    Li H; Zhu L; Wang J; Li L; Shih K
    Environ Sci Technol; 2016 Sep; 50(17):9551-7. PubMed ID: 27508312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.