BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30849629)

  • 1. Insight into chronic exposure effects of nanosized titanium dioxide on Typha angustifolia leaf litter decomposition.
    Zhang Y; Yin Y; Ma H; Cao X; Ma B; Qv M; Zhang B; Akbar S; Du J
    Chemosphere; 2019 Jun; 224():680-688. PubMed ID: 30849629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic impacts of TiO
    Du J; Zhang Y; Guo W; Li N; Gao C; Cui M; Lin Z; Wei M; Zhang H
    J Hazard Mater; 2018 May; 350():121-127. PubMed ID: 29462763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.
    Du J; Qv M; Zhang Y; Yin X; Wan N; Zhang B; Zhang H
    Chemosphere; 2018 Oct; 208():698-706. PubMed ID: 29894971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?
    Du J; Zhang Y; Liu L; Qv M; Lv Y; Yin Y; Zhou Y; Cui M; Zhu Y; Zhang H
    Chemosphere; 2017 Nov; 187():368-375. PubMed ID: 28858717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect effects of zinc oxide and titanium dioxide nanoparticles on the decomposition of leaf litter in streams.
    Riyami SA; Mahrouqi DA; Abed RMM; Elshafie A; Sathe P; Barry MJ
    Ecotoxicology; 2019 May; 28(4):435-448. PubMed ID: 30929110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Light at Night Alleviates the Negative Effect of Pb on Freshwater Ecosystems.
    Pu G; Zeng D; Mo L; Liao J; Chen X
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30884876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?
    Jain A; Kumar S; Seena S
    Sci Total Environ; 2019 Feb; 653():930-937. PubMed ID: 30759618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can titanium dioxide nanoparticles modulate the effects of zinc oxide nanoparticles on aquatic leaf litter decomposition?
    Du J; Wang X; Zhang Y; Pu G; Jin B; Qv W; Cao X
    Chemosphere; 2023 Oct; 337():139313. PubMed ID: 37354960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do environmental concentrations of zinc oxide nanoparticle pose ecotoxicological risk to aquatic fungi associated with leaf litter decomposition?
    Du J; Zhang Y; Yin Y; Zhang J; Ma H; Li K; Wan N
    Water Res; 2020 Jul; 178():115840. PubMed ID: 32339863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmful effect of nanoparticles on the functions of freshwater ecosystems: Insight into nanoZnO-polluted stream.
    Du J; Zhang Y; Guo R; Meng F; Gao Y; Ma C; Zhang H
    Chemosphere; 2019 Jan; 214():830-838. PubMed ID: 30300841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition.
    Pesce S; Zoghlami O; Margoum C; Artigas J; Chaumot A; Foulquier A
    Aquat Toxicol; 2016 Apr; 173():120-131. PubMed ID: 26859779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition-a microcosm experiment.
    Andrade R; Pascoal C; Cássio F
    FEMS Microbiol Ecol; 2016 Jul; 92(7):. PubMed ID: 27183974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algae, shrimp grazing, and fecal pellets synergistically increase microbial activity and enhance N immobilization during Typha angustifolia leaf litter decomposition.
    Kong X; Wu C; Yao B; He Z; Lin H; He X; Lin Y; Cao T; Jia Y; Li Y; Tian K; Tian X
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17919-17931. PubMed ID: 34677766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of leaf decomposition in copper-contaminated freshwater mesocosms.
    Roussel H; Chauvet E; Bonzom JM
    Environ Toxicol Chem; 2008 Mar; 27(3):637-44. PubMed ID: 17944548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic Exposure Effects of Silver Nanoparticles on Stream Microbial Decomposer Communities and Ecosystem Functions.
    Tlili A; Jabiol J; Behra R; Gil-Allué C; Gessner MO
    Environ Sci Technol; 2017 Feb; 51(4):2447-2455. PubMed ID: 28085256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplastic pollution inhibits stream leaf decomposition through modulating microbial metabolic activity and fungal community structure.
    Du J; Qv W; Niu Y; Qv M; Jin K; Xie J; Li Z
    J Hazard Mater; 2022 Feb; 424(Pt A):127392. PubMed ID: 34879582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment.
    Jovanović B; Bezirci G; Çağan AS; Coppens J; Levi EE; Oluz Z; Tuncel E; Duran H; Beklioğlu M
    Nanotoxicology; 2016 Sep; 10(7):902-12. PubMed ID: 26901391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.