These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30849697)
1. Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model. Wang C; Li L; Zeng Z; Xu X; Ma X; Chen R; Su C Bioresour Technol; 2019 Jun; 281():412-420. PubMed ID: 30849697 [TBL] [Abstract][Full Text] [Related]
2. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Chen T; Zhang J; Wu J Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484 [TBL] [Abstract][Full Text] [Related]
4. Pyrolysis kinetics of potassium-impregnated rubberwood analyzed by evolutionary computation. Lin YY; Chen WH; Colin B; Lin BJ; Leconte F; Pétrissans A; Pétrissans M Bioresour Technol; 2021 Jan; 319():124145. PubMed ID: 32979598 [TBL] [Abstract][Full Text] [Related]
5. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis. Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438 [TBL] [Abstract][Full Text] [Related]
6. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. Radojević M; Janković B; Jovanović V; Stojiljković D; Manić N PLoS One; 2018; 13(10):e0206657. PubMed ID: 30379972 [TBL] [Abstract][Full Text] [Related]
7. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Wang X; Hu M; Hu W; Chen Z; Liu S; Hu Z; Xiao B Bioresour Technol; 2016 Nov; 219():510-520. PubMed ID: 27521788 [TBL] [Abstract][Full Text] [Related]
8. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Sfakiotakis S; Vamvuka D Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115 [TBL] [Abstract][Full Text] [Related]
9. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere. Zhang J; Chen T; Wu J; Wu J Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567 [TBL] [Abstract][Full Text] [Related]
10. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC. Kristanto J; Azis MM; Purwono S Heliyon; 2021 Jul; 7(7):e07669. PubMed ID: 34386629 [TBL] [Abstract][Full Text] [Related]
11. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Arenas CN; Navarro MV; Martínez JD Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890 [TBL] [Abstract][Full Text] [Related]
12. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Ding Y; Wang C; Chaos M; Chen R; Lu S Bioresour Technol; 2016 Jan; 200():658-65. PubMed ID: 26551654 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Wu Z; Wang S; Zhao J; Chen L; Meng H Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297 [TBL] [Abstract][Full Text] [Related]
14. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Mian I; Li X; Jian Y; Dacres OD; Zhong M; Liu J; Ma F; Rahman N Bioresour Technol; 2019 Dec; 294():122099. PubMed ID: 31520856 [TBL] [Abstract][Full Text] [Related]
15. Kinetic reaction mechanism of lignocellulosic biomass oxidative pyrolysis based on combined kinetics. Zhong Y; Zhou T; Wei S; Tang Z; Li C; Ding Y J Environ Manage; 2024 Feb; 352():120055. PubMed ID: 38184868 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of Corn Stover Components Pyrolysis at Low Temperature Based on Detergent Fibers. Wang F; Zhang D; Chen M; Yi W; Wang L Front Bioeng Biotechnol; 2019; 7():188. PubMed ID: 31428607 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles. Zhang D; Pan R; Chen R; Xu X Appl Biochem Biotechnol; 2019 Dec; 189(4):1056-1083. PubMed ID: 31165393 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Yuan T; Tahmasebi A; Yu J Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840 [TBL] [Abstract][Full Text] [Related]
19. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics. Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648 [TBL] [Abstract][Full Text] [Related]
20. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]