BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 30849722)

  • 1. A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood.
    Xu X; Cen Y; Xu G; Wei F; Shi M; Hu Q
    Biosens Bioelectron; 2019 Apr; 131():232-236. PubMed ID: 30849722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food.
    Huang S; Yao J; Chu X; Liu Y; Xiao Q; Zhang Y
    J Agric Food Chem; 2019 Oct; 67(40):11244-11255. PubMed ID: 31532667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase.
    Zhu Y; Tong X; Wei Q; Cai G; Cao Y; Tong C; Shi S; Wang F
    Biosens Bioelectron; 2022 Jan; 196():113691. PubMed ID: 34637993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood.
    Ma K; Lu L; Qi Z; Feng J; Zhuo C; Zhang Y
    Biosens Bioelectron; 2015 Jun; 68():648-653. PubMed ID: 25660508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual emission carbon dots as enzyme mimics and fluorescent probes for the determination of o-phenylenediamine and hydrogen peroxide.
    Mathivanan D; Tammina SK; Wang X; Yang Y
    Mikrochim Acta; 2020 Apr; 187(5):292. PubMed ID: 32347382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric sensing of butyrylcholinesterase activity based on the MnO
    Ma Z; Li P; Jiao M; Shi YE; Zhai Y; Wang Z
    Mikrochim Acta; 2021 Aug; 188(9):294. PubMed ID: 34363549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoOOH nanosheets ensure ratiometric fluorescence assay of acetylcholinesterase.
    Zhang Wang Xu Yang Shu XP; Wang JH
    Talanta; 2022 Nov; 249():123664. PubMed ID: 35700646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ratiometric fluorescence strategy based on inner filter effect for Cu
    Li Y; Liang H; Lin B; Yu Y; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2021 Oct; 188(11):385. PubMed ID: 34664146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods used for the determination of cholinesterase activity in whole blood.
    Naik RS; Doctor BP; Saxena A
    Chem Biol Interact; 2008 Sep; 175(1-3):298-302. PubMed ID: 18555980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine.
    Li P; Liang N; Liu C; Xia L; Qu F; Song ZL; Kong RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121682. PubMed ID: 35926289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; CorrĂȘa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles.
    Wu C; Zhu L; Lu Q; Li H; Zhang Y; Yao S
    Mikrochim Acta; 2019 Nov; 186(12):754. PubMed ID: 31705210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric fluorescence and colorimetric dual-mode sensing platform based on carbon dots for detecting copper(II) ions and D-penicillamine.
    Zhang W; Zhang Y; Liu X; Zhang Y; Liu Y; Wang W; Su R; Sun Y; Huang Y; Song D; Wu Y; Wang X
    Anal Bioanal Chem; 2022 Feb; 414(4):1651-1662. PubMed ID: 34988586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity.
    Chen G; Feng H; Xi W; Xu J; Pan S; Qian Z
    Analyst; 2019 Jan; 144(2):559-566. PubMed ID: 30417195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Probe for Fluorescence Detection of the Acetylcholinesterase Activity Based on Molecularly Imprinted Polymers Coated Carbon Dots.
    Jia Z; Luo Y; Wen H; Huang S; Du X; Xue W
    Chem Pharm Bull (Tokyo); 2019 Aug; 67(8):795-800. PubMed ID: 31061298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.
    Sun J; Yang X
    Biosens Bioelectron; 2015 Dec; 74():177-82. PubMed ID: 26141104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal antibodies to fetal bovine serum acetylcholinesterase distinguish between acetylcholinesterases from ruminant and non-ruminant species.
    Naik RS; Belinskaya T; Vinayaka CR; Saxena A
    Chem Biol Interact; 2020 Oct; 330():109225. PubMed ID: 32795450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co, N co-doped porous carbon-based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity.
    Sun W; Wang N; Zhou X; Sheng Y; Su X
    Mikrochim Acta; 2022 Sep; 189(9):363. PubMed ID: 36044087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MnO
    An X; Chen R; Chen Q; Tan Q; Pan S; Liu H; Hu X
    Mikrochim Acta; 2021 Apr; 188(5):156. PubMed ID: 33825037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.