BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30849723)

  • 1. DNA conformational polymorphism for biosensing applications.
    Hu Z; Suo Z; Liu W; Zhao B; Xing F; Zhang Y; Feng L
    Biosens Bioelectron; 2019 Apr; 131():237-249. PubMed ID: 30849723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional DNA switches: rational design and electrochemical signaling.
    Tang Y; Ge B; Sen D; Yu HZ
    Chem Soc Rev; 2014 Jan; 43(2):518-29. PubMed ID: 24169924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer-Functionalized DNA Nanostructures for Biological Applications.
    Fu X; Peng F; Lee J; Yang Q; Zhang F; Xiong M; Kong G; Meng HM; Ke G; Zhang XB
    Top Curr Chem (Cham); 2020 Feb; 378(2):21. PubMed ID: 32030541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA origami-based aptasensors.
    Sameiyan E; Bagheri E; Ramezani M; Alibolandi M; Abnous K; Taghdisi SM
    Biosens Bioelectron; 2019 Oct; 143():111662. PubMed ID: 31491726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An omega-like DNA nanostructure utilized for small molecule introduction to stimulate formation of DNAzyme-aptamer conjugates.
    Liu B; Zhang B; Chen G; Tang D
    Chem Commun (Camb); 2014 Feb; 50(15):1900-2. PubMed ID: 24407587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combination of DNA nanostructures and materials for highly sensitive electrochemical detection.
    Tian R; Ma W; Wang L; Xie W; Wang Y; Yin Y; Weng T; He S; Fang S; Liang L; Wang L; Wang D; Bai J
    Bioelectrochemistry; 2024 Jun; 157():108651. PubMed ID: 38281367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials.
    Goud KY; Reddy KK; Satyanarayana M; Kummari S; Gobi KV
    Mikrochim Acta; 2019 Dec; 187(1):29. PubMed ID: 31813061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding-induced autonomous disassembly of aptamer-DNAzyme supersandwich nanostructures for sensitive electrochemiluminescence turn-on detection of ochratoxin A.
    Chen Y; Yang M; Xiang Y; Yuan R; Chai Y
    Nanoscale; 2014 Jan; 6(2):1099-104. PubMed ID: 24296915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification.
    Zhang H; Li M; Li C; Guo Z; Dong H; Wu P; Cai C
    Biosens Bioelectron; 2015 Dec; 74():98-103. PubMed ID: 26120816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme.
    Zhang H; Jiang B; Xiang Y; Chai Y; Yuan R
    Analyst; 2012 Feb; 137(4):1020-3. PubMed ID: 22193340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.
    Zhu C; Du D; Lin Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):43-55. PubMed ID: 27373809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review.
    Green NS; Norton ML
    Anal Chim Acta; 2015 Jan; 853():127-142. PubMed ID: 25467454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-assembled nanomaterials for biosensing and biomedical applications.
    Kong RM; Zhang XB; Chen Z; Tan W
    Small; 2011 Sep; 7(17):2428-36. PubMed ID: 21726041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu
    Chen S; Liu P; Su K; Li X; Qin Z; Xu W; Chen J; Li C; Qiu J
    Biosens Bioelectron; 2018 Jan; 99():338-345. PubMed ID: 28800505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Assisted Label-Free Homogeneous Electrochemical Biosensing Strategy based on Aptamer-Switched Bidirectional DNA Polymerization.
    Wang W; Ge L; Sun X; Hou T; Li F
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28566-75. PubMed ID: 26652835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA nanotechnology with one-dimensional self-assembled nanostructures.
    Wang F; Willner B; Willner I
    Curr Opin Biotechnol; 2013 Aug; 24(4):562-74. PubMed ID: 23477850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
    Walter HK; Bauer J; Steinmeyer J; Kuzuya A; Niemeyer CM; Wagenknecht HA
    Nano Lett; 2017 Apr; 17(4):2467-2472. PubMed ID: 28249387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.