These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30849772)

  • 1. A probabilistic recurrent neural network for decoding hind limb kinematics from multi-segment recordings of the dorsal horn neurons.
    Fathi Y; Erfanian A
    J Neural Eng; 2019 Jun; 16(3):036023. PubMed ID: 30849772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding hind limb kinematics from neuronal activity of the dorsal horn neurons using multiple level learning algorithm.
    Yeganegi H; Fathi Y; Erfanian A
    Sci Rep; 2018 Jan; 8(1):577. PubMed ID: 29330489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications.
    Rigosa J; Weber DJ; Prochazka A; Stein RB; Micera S
    J Neural Eng; 2011 Aug; 8(4):046019. PubMed ID: 21701057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings.
    Han S; Chu JU; Kim H; Park JW; Youn I
    Sci Rep; 2017 Mar; 7():44197. PubMed ID: 28276474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-space decoding of primary afferent neuron firing rates.
    Wagenaar JB; Ventura V; Weber DJ
    J Neural Eng; 2011 Feb; 8(1):016002. PubMed ID: 21245525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding hindlimb kinematics from descending and ascending neural signals during cat locomotion.
    Fathi Y; Erfanian A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33395669
    [No Abstract]   [Full Text] [Related]  

  • 7. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings.
    Bruns TM; Wagenaar JB; Bauman MJ; Gaunt RA; Weber DJ
    J Neural Eng; 2013 Apr; 10(2):026020. PubMed ID: 23503062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Bladder Pressure and Volume from the Neural Activity of Lumbosacral Dorsal Horn Using a Long-Short-Term-Memory-based Deep Neural Network.
    Jabbari M; Erfanian A
    Sci Rep; 2019 Dec; 9(1):18128. PubMed ID: 31792247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings.
    Han S; Chu JU; Park JW; Youn I
    J Comput Neurosci; 2019 Feb; 46(1):77-90. PubMed ID: 29766393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements.
    Ma X; Ma C; Huang J; Zhang P; Xu J; He J
    Front Neurosci; 2017; 11():44. PubMed ID: 28223914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding hindlimb kinematics from primate motor cortex using long short-term memory recurrent neural networks.
    Wang Y; Truccolo W; Borton DA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1944-1947. PubMed ID: 30440779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of cat hindlimb stepping.
    Shen L; Poppele RE
    J Neurophysiol; 1995 Dec; 74(6):2266-80. PubMed ID: 8747190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspinal microstimulation produces over-ground walking in anesthetized cats.
    Holinski BJ; Mazurek KA; Everaert DG; Toossi A; Lucas-Osma AM; Troyk P; Etienne-Cummings R; Stein RB; Mushahwar VK
    J Neural Eng; 2016 Oct; 13(5):056016. PubMed ID: 27619069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion.
    Weber DJ; Stein RB; Everaert DG; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):240-3. PubMed ID: 16792303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Bilateral Hindlimb Kinematics From Cat Spinal Signals Using Three-Dimensional Convolutional Neural Network.
    Fathi Y; Erfanian A
    Front Neurosci; 2022; 16():801818. PubMed ID: 35401098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Decoding Algorithms for Estimating Bladder Pressure from Dorsal Root Ganglia Neural Recordings.
    Ross SE; Ouyang Z; Rajagopalan S; Bruns TM
    Ann Biomed Eng; 2018 Feb; 46(2):233-246. PubMed ID: 29181722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved decoding of limb-state feedback from natural sensors.
    Wagenaar JB; Ventura V; Weber DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4206-9. PubMed ID: 19964343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online feedback control of functional electrical stimulation using dorsal root ganglia recordings.
    Bauman MJ; Bruns TM; Wagenaar JB; Gaunt RA; Weber DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7246-9. PubMed ID: 22256011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.