These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30849869)
1. A coarse-grained polymer model for studying the glass transition. Hsu HP; Kremer K J Chem Phys; 2019 Mar; 150(9):091101. PubMed ID: 30849869 [TBL] [Abstract][Full Text] [Related]
2. Breakdown of time-temperature superposition in a bead-spring polymer melt near the glass transition temperature. Yamazaki T J Phys Chem B; 2014 Dec; 118(50):14687-94. PubMed ID: 25485844 [TBL] [Abstract][Full Text] [Related]
3. A coarse-graining procedure for polymer melts applied to 1,4-polybutadiene. Strauch T; Yelash L; Paul W Phys Chem Chem Phys; 2009 Mar; 11(12):1942-8. PubMed ID: 19280005 [TBL] [Abstract][Full Text] [Related]
4. Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls. Solar M; Binder K; Paul W J Chem Phys; 2017 May; 146(20):203308. PubMed ID: 28571361 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependence of the slip length in polymer melts at attractive surfaces. Servantie J; Müller M Phys Rev Lett; 2008 Jul; 101(2):026101. PubMed ID: 18764200 [TBL] [Abstract][Full Text] [Related]
6. Effect of chain stiffness and temperature on the dynamics and microstructure of crystallizable bead-spring polymer melts. Nguyen HT; Hoy RS Phys Rev E; 2016 Nov; 94(5-1):052502. PubMed ID: 27967146 [TBL] [Abstract][Full Text] [Related]
8. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers. Xie SJ; Qian HJ; Lu ZY J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577 [TBL] [Abstract][Full Text] [Related]
9. Probe molecules in polymer melts near the glass transition: A molecular dynamics study of chain length effects. Vallée RA; Paul W; Binder K J Chem Phys; 2010 Jan; 132(3):034901. PubMed ID: 20095750 [TBL] [Abstract][Full Text] [Related]
10. Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses. Fu Y; Bocharova V; Ma M; Sokolov AP; Sumpter BG; Kumar R Phys Chem Chem Phys; 2017 Oct; 19(40):27442-27451. PubMed ID: 28975173 [TBL] [Abstract][Full Text] [Related]
11. Molecular-dynamics simulation study of the glass transition in amorphous polymers with controlled chain stiffness. Bulacu M; van der Giessen E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011807. PubMed ID: 17677484 [TBL] [Abstract][Full Text] [Related]
12. Generalized entropy theory of glass-formation in fully flexible polymer melts. Xu WS; Douglas JF; Freed KF J Chem Phys; 2016 Dec; 145(23):234509. PubMed ID: 28010099 [TBL] [Abstract][Full Text] [Related]
13. A coarse-grained molecular dynamics study of segmental structure and mobility in capped crosslinked copolymer films. Davris T; Lyulin AV J Chem Phys; 2015 Aug; 143(7):074906. PubMed ID: 26298155 [TBL] [Abstract][Full Text] [Related]
14. Effect of chain stiffness on the competition between crystallization and glass-formation in model unentangled polymers. Nguyen HT; Smith TB; Hoy RS; Karayiannis NCh J Chem Phys; 2015 Oct; 143(14):144901. PubMed ID: 26472392 [TBL] [Abstract][Full Text] [Related]
15. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition. Peter S; Meyer H; Baschnagel J Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324 [TBL] [Abstract][Full Text] [Related]
16. Plasticization and antiplasticization of polymer melts diluted by low molar mass species. Stukalin EB; Douglas JF; Freed KF J Chem Phys; 2010 Feb; 132(8):084504. PubMed ID: 20192304 [TBL] [Abstract][Full Text] [Related]
17. Static and dynamic properties of the interface between a polymer brush and a melt of identical chains. Pastorino C; Binder K; Kreer T; Müller M J Chem Phys; 2006 Feb; 124(6):64902. PubMed ID: 16483239 [TBL] [Abstract][Full Text] [Related]
18. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions. Shakirov T; Paul W Phys Rev E; 2018 Apr; 97(4-1):042501. PubMed ID: 29758595 [TBL] [Abstract][Full Text] [Related]
19. Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression. Milchev A; Binder K Soft Matter; 2014 Jun; 10(21):3783-97. PubMed ID: 24700280 [TBL] [Abstract][Full Text] [Related]
20. Efficient equilibration of confined and free-standing films of highly entangled polymer melts. Hsu HP; Kremer K J Chem Phys; 2020 Oct; 153(14):144902. PubMed ID: 33086819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]