These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30850396)
1. Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells. Albertolle ME; Glass SM; Trefts E; Guengerich FP J Biol Chem; 2019 Apr; 294(16):6522-6530. PubMed ID: 30850396 [TBL] [Abstract][Full Text] [Related]
2. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186 [TBL] [Abstract][Full Text] [Related]
3. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML). Gu L; Robinson RA Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981 [TBL] [Abstract][Full Text] [Related]
4. A critical evaluation of probes for cysteine sulfenic acid. Pople JMM; Chalker JM Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852 [TBL] [Abstract][Full Text] [Related]
5. Formation and functions of protein sulfenic acids. Poole LB Curr Protoc Toxicol; 2004 Feb; Chapter 17():Unit17.1. PubMed ID: 20963761 [TBL] [Abstract][Full Text] [Related]
6. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857 [TBL] [Abstract][Full Text] [Related]
9. Thiolation and nitrosation of cysteines in biological fluids and cells. Di Simplicio P; Franconi F; Frosalí S; Di Giuseppe D Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094 [TBL] [Abstract][Full Text] [Related]
10. Proteome-Wide Analysis of Cysteine S-Sulfenylation Using a Benzothiazine-Based Probe. Fu L; Liu K; Ferreira RB; Carroll KS; Yang J Curr Protoc Protein Sci; 2019 Feb; 95(1):e76. PubMed ID: 30312022 [TBL] [Abstract][Full Text] [Related]
11. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Devarie-Baez NO; Silva Lopez EI; Furdui CM Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608 [TBL] [Abstract][Full Text] [Related]
12. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana. Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776 [TBL] [Abstract][Full Text] [Related]
13. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins. Nelson KJ; Klomsiri C; Codreanu SG; Soito L; Liebler DC; Rogers LC; Daniel LW; Poole LB Methods Enzymol; 2010; 473():95-115. PubMed ID: 20513473 [TBL] [Abstract][Full Text] [Related]
14. Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Turell L; Steglich M; Torres MJ; Deambrosi M; Antmann L; Furdui CM; Schopfer FJ; Alvarez B Free Radic Biol Med; 2021 Mar; 165():254-264. PubMed ID: 33515755 [TBL] [Abstract][Full Text] [Related]
15. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress. Shinkai Y; Abiko Y; Ida T; Miura T; Kakehashi H; Ishii I; Nishida M; Sawa T; Akaike T; Kumagai Y Chem Res Toxicol; 2015 May; 28(5):838-47. PubMed ID: 25807370 [TBL] [Abstract][Full Text] [Related]
16. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Klomsiri C; Nelson KJ; Bechtold E; Soito L; Johnson LC; Lowther WT; Ryu SE; King SB; Furdui CM; Poole LB Methods Enzymol; 2010; 473():77-94. PubMed ID: 20513472 [TBL] [Abstract][Full Text] [Related]
17. Sulfhydryl-specific probe for monitoring protein redox sensitivity. Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Turell L; Carballal S; Botti H; Radi R; Alvarez B Braz J Med Biol Res; 2009 Apr; 42(4):305-11. PubMed ID: 19330257 [TBL] [Abstract][Full Text] [Related]
19. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Sohn J; Rudolph J Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134 [TBL] [Abstract][Full Text] [Related]
20. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility. Shi Y; Carroll KS Redox Biol; 2021 Oct; 46():102072. PubMed ID: 34298464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]