BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30850470)

  • 1. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates?
    Sandve SR; Fjellheim S
    Mol Ecol; 2010 May; 19(10):2075-88. PubMed ID: 20406386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.
    Vigeland MD; Spannagl M; Asp T; Paina C; Rudi H; Rognli OA; Fjellheim S; Sandve SR
    New Phytol; 2013 Sep; 199(4):1060-1068. PubMed ID: 23701123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses.
    Sandve SR; Rudi H; Asp T; Rognli OA
    BMC Evol Biol; 2008 Sep; 8():245. PubMed ID: 18775065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.
    McKeown M; Schubert M; Marcussen T; Fjellheim S; Preston JC
    Plant Physiol; 2016 Sep; 172(1):416-26. PubMed ID: 27474116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses.
    Li C; Rudi H; Stockinger EJ; Cheng H; Cao M; Fox SE; Mockler TC; Westereng B; Fjellheim S; Rognli OA; Sandve SR
    BMC Plant Biol; 2012 May; 12():65. PubMed ID: 22569006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs.
    Badawi M; Danyluk J; Boucho B; Houde M; Sarhan F
    Mol Genet Genomics; 2007 May; 277(5):533-54. PubMed ID: 17285309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution.
    Zhang L; Zhu X; Zhao Y; Guo J; Zhang T; Huang W; Huang J; Hu Y; Huang CH; Ma H
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35134207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes.
    Fjellheim S; Young DA; Paliocha M; Johnsen SS; Schubert M; Preston JC
    J Exp Bot; 2022 Jun; 73(12):4079-4093. PubMed ID: 35394528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the chilling- before drought-tolerance hypothesis in Pooideae grasses.
    Das A; Dedon N; Enders DJ; Fjellheim S; Preston JC
    Mol Ecol; 2023 Feb; 32(4):772-785. PubMed ID: 36420966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize.
    Yan L; Kenchanmane Raju SK; Lai X; Zhang Y; Dai X; Rodriguez O; Mahboub S; Roston RL; Schnable JC
    Plant J; 2019 Sep; 99(5):965-977. PubMed ID: 31069858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.
    McKeown M; Schubert M; Preston JC; Fjellheim S
    Mol Phylogenet Evol; 2017 Sep; 114():111-121. PubMed ID: 28603035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway.
    Barrero-Gil J; Salinas J
    Adv Exp Med Biol; 2018; 1081():3-22. PubMed ID: 30288701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv.
    Chew O; Lelean S; John UP; Spangenberg GC
    Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates.
    Sandve SR; Kosmala A; Rudi H; Fjellheim S; Rapacz M; Yamada T; Rognli OA
    Plant Sci; 2011 Jan; 180(1):69-77. PubMed ID: 21421349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).
    Barrios A; Caminero C; García P; Krezdorn N; Hoffmeier K; Winter P; Pérez de la Vega M
    BMC Plant Biol; 2017 Jun; 17(1):111. PubMed ID: 28666411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions.
    Grossi M; Giorni E; Rizza F; Stanca AM; Cattivelli L
    Plant Mol Biol; 1998 Dec; 38(6):1061-9. PubMed ID: 9869412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering.
    Woods DP; McKeown MA; Dong Y; Preston JC; Amasino RM
    Plant Physiol; 2016 Apr; 170(4):2124-35. PubMed ID: 26848096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.