BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30850548)

  • 1. Mechanism for autoinhibition and activation of the MORC3 ATPase.
    Zhang Y; Klein BJ; Cox KL; Bertulat B; Tencer AH; Holden MR; Wright GM; Black J; Cardoso MC; Poirier MG; Kutateladze TG
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6111-6119. PubMed ID: 30850548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MORC3 Is a Target of the Influenza A Viral Protein NS1.
    Zhang Y; Ahn J; Green KJ; Vann KR; Black J; Brooke CB; Kutateladze TG
    Structure; 2019 Jun; 27(6):1029-1033.e3. PubMed ID: 31006586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin.
    Li S; Yen L; Pastor WA; Johnston JB; Du J; Shew CJ; Liu W; Ho J; Stender B; Clark AT; Burlingame AL; Daxinger L; Patel DJ; Jacobsen SE
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5108-16. PubMed ID: 27528681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase.
    Andrews FH; Tong Q; Sullivan KD; Cornett EM; Zhang Y; Ali M; Ahn J; Pandey A; Guo AH; Strahl BD; Costello JC; Espinosa JM; Rothbart SB; Kutateladze TG
    Cell Rep; 2016 Sep; 16(12):3195-3207. PubMed ID: 27653685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step colocalization of MORC3 with PML nuclear bodies.
    Mimura Y; Takahashi K; Kawata K; Akazawa T; Inoue N
    J Cell Sci; 2010 Jun; 123(Pt 12):2014-24. PubMed ID: 20501696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MORC3 Forms Nuclear Condensates through Phase Separation.
    Zhang Y; Bertulat B; Tencer AH; Ren X; Wright GM; Black J; Cardoso MC; Kutateladze TG
    iScience; 2019 Jul; 17():182-189. PubMed ID: 31284181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of the MORC4 ATPase activation.
    Tencer AH; Cox KL; Wright GM; Zhang Y; Petell CJ; Klein BJ; Strahl BD; Black JC; Poirier MG; Kutateladze TG
    Nat Commun; 2020 Oct; 11(1):5466. PubMed ID: 33122719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation.
    Groh S; Milton AV; Marinelli LK; Sickinger CV; Russo A; Bollig H; de Almeida GP; Schmidt A; Forné I; Imhof A; Schotta G
    Nat Commun; 2021 Oct; 12(1):5996. PubMed ID: 34650047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins.
    Liu Y; Tempel W; Zhang Q; Liang X; Loppnau P; Qin S; Min J
    J Biol Chem; 2016 Apr; 291(17):9000-13. PubMed ID: 26933034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Viral Protein Mimics Histone to Hijack Host MORC3.
    Zhu L; Qin J
    Structure; 2019 Jun; 27(6):883-885. PubMed ID: 31167123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA.
    Dürr H; Körner C; Müller M; Hickmann V; Hopfner KP
    Cell; 2005 May; 121(3):363-73. PubMed ID: 15882619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A.
    Guo X; Wang L; Li J; Ding Z; Xiao J; Yin X; He S; Shi P; Dong L; Li G; Tian C; Wang J; Cong Y; Xu Y
    Nature; 2015 Jan; 517(7536):640-4. PubMed ID: 25383530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of MORC3 in silencing transposable elements in mouse embryonic stem cells.
    Desai VP; Chouaref J; Wu H; Pastor WA; Kan RL; Oey HM; Li Z; Ho J; Vonk KKD; San Leon Granado D; Christopher MA; Clark AT; Jacobsen SE; Daxinger L
    Epigenetics Chromatin; 2021 Oct; 14(1):49. PubMed ID: 34706774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and regulation of the chromatin remodeller ISWI.
    Yan L; Wang L; Tian Y; Xia X; Chen Z
    Nature; 2016 Dec; 540(7633):466-469. PubMed ID: 27919072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis.
    Wagner K; Moolenaar GF; Goosen N
    DNA Repair (Amst); 2011 May; 10(5):483-96. PubMed ID: 21393072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine.
    Neuwald AF
    Nucleic Acids Res; 2006; 34(18):5280-90. PubMed ID: 17012286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Basis for the PZP Domain of BRPF1 Association with Chromatin.
    Klein BJ; Cox KL; Jang SM; Côté J; Poirier MG; Kutateladze TG
    Structure; 2020 Jan; 28(1):105-110.e3. PubMed ID: 31711755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insight into the zinc finger CW domain as a histone modification reader.
    He F; Umehara T; Saito K; Harada T; Watanabe S; Yabuki T; Kigawa T; Takahashi M; Kuwasako K; Tsuda K; Matsuda T; Aoki M; Seki E; Kobayashi N; Güntert P; Yokoyama S; Muto Y
    Structure; 2010 Sep; 18(9):1127-39. PubMed ID: 20826339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.