These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30850597)

  • 21. In Situ Ultra-Small- and Small-Angle X-ray Scattering Study of ZnO Nanoparticle Formation and Growth through Chemical Bath Deposition in the Presence of Polyvinylpyrrolidone.
    Abitaev K; Atanasova P; Bill J; Preisig N; Kuzmenko I; Ilavsky J; Liu Y; Sottmann T
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ monitoring of Pt nanoparticle formation in ethylene glycol solution by SAXS-influence of the NaOH to Pt ratio.
    Steinfeldt N
    Langmuir; 2012 Sep; 28(36):13072-9. PubMed ID: 22891651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow.
    Nazarenko Y; Rangel-Alvarado RB; Kos G; Kurien U; Ariya PA
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4480-4493. PubMed ID: 27943145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison.
    Pauw BR; Kästner C; Thünemann AF
    J Appl Crystallogr; 2017 Oct; 50(Pt 5):1280-1288. PubMed ID: 29021732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation.
    Polte J; Ahner TT; Delissen F; Sokolov S; Emmerling F; Thünemann AF; Kraehnert R
    J Am Chem Soc; 2010 Feb; 132(4):1296-301. PubMed ID: 20102229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Airborne Nanoparticle Loss in Sampling Tubing.
    Tsai CS
    J Occup Environ Hyg; 2015; 12(8):D161-7. PubMed ID: 25746064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavior of Au Nanoparticles under Pressure Observed by In Situ Small-Angle X-ray Scattering.
    Martín-Sánchez C; Sánchez-Iglesias A; Barreda-Argüeso JA; Polian A; Liz-Marzán LM; Rodríguez F
    ACS Nano; 2023 Jan; 17(1):743-751. PubMed ID: 36525616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A SAXS/WAXS XAFS study of crystallisation in cordierite glass.
    Greaves GN; Bras W; Oversluizen M; Clark SM
    Faraday Discuss; 2003; 122():299-314; discussion 381-93. PubMed ID: 12555864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.
    Huber FJ; Altenhoff M; Will S
    Rev Sci Instrum; 2016 May; 87(5):053102. PubMed ID: 27250387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering.
    Appel C; Kuttich B; Kraus T; Stühn B
    Nanoscale; 2021 Apr; 13(14):6916-6920. PubMed ID: 33885492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small-angle X-ray scattering in droplet-based microfluidics.
    Stehle R; Goerigk G; Wallacher D; Ballauff M; Seiffert S
    Lab Chip; 2013 Apr; 13(8):1529-37. PubMed ID: 23429654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of in situ SAXS/WAXS characterization into silicon/glass microreactors.
    Beuvier T; Panduro EA; Kwaśniewski P; Marre S; Lecoutre C; Garrabos Y; Aymonier C; Calvignac B; Gibaud A
    Lab Chip; 2015 May; 15(9):2002-8. PubMed ID: 25792250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement.
    Kulkarni P; Qi C; Fukushima N
    Aerosol Sci Technol; 2016; 50(11):1167-1179. PubMed ID: 28413241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ analysis of a bimodal size distribution of superparamagnetic nanoparticles.
    Thünemann AF; Rolf S; Knappe P; Weidner S
    Anal Chem; 2009 Jan; 81(1):296-301. PubMed ID: 19117457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-state (13)C NMR and synchrotron SAXS/WAXS studies of uniaxially-oriented polyethylene.
    Afeworki M; Brant P; Lustiger A; Norman A
    Solid State Nucl Magn Reson; 2015 Nov; 72():27-40. PubMed ID: 26476811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis.
    Fleury B; Cortes-Huerto R; Taché O; Testard F; Menguy N; Spalla O
    Nano Lett; 2015 Sep; 15(9):6088-94. PubMed ID: 26263393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering.
    Shyjumon I; Rappolt M; Sartori B; Amenitsch H; Laggner P
    Rev Sci Instrum; 2008 Apr; 79(4):043905. PubMed ID: 18447533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined electrospray-SMPS and SR-SAXS investigation of colloidal silica aggregation. Part I. Influence of starting material on gel morphology.
    Johnsson AC; Camerani MC; Abbas Z
    J Phys Chem B; 2011 Feb; 115(5):765-75. PubMed ID: 21210668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calibration of Polarization-Sensitive and Dual-Angle Laser Light Scattering Methods Using Standard Latex Particles.
    Shimada M; Chang H; Fujishige Y; Okuyama K
    J Colloid Interface Sci; 2001 Sep; 241(1):71-80. PubMed ID: 11502109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning.
    Monge N; Deschamps A; Amini MR
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):202-212. PubMed ID: 38420992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.