BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30850632)

  • 1. miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish.
    Desvignes T; Batzel P; Sydes J; Eames BF; Postlethwait JH
    Sci Rep; 2019 Mar; 9(1):3913. PubMed ID: 30850632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational identification of miRNAs, their targets and functions in three-spined stickleback (Gasterosteus aculeatus).
    Chaturvedi A; Raeymaekers JA; Volckaert FA
    Mol Ecol Resour; 2014 Jul; 14(4):768-77. PubMed ID: 24400739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the annotation of zebrafish microRNAs based on small RNA sequencing.
    Desvignes T; Beam MJ; Batzel P; Sydes J; Postlethwait JH
    Gene; 2014 Aug; 546(2):386-9. PubMed ID: 24835514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evolutionary genomics of medaka and three-spined stickleback fabp2a and fabp2b genes with fabp2 of zebrafish.
    Parmar MB; Wright JM
    Genome; 2013 Jan; 56(1):27-37. PubMed ID: 23379336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics Resource Manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools.
    Tilton SC; Tal TL; Scroggins SM; Franzosa JA; Peterson ES; Tanguay RL; Waters KM
    BMC Bioinformatics; 2012 Nov; 13():311. PubMed ID: 23174015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep sequencing of small RNA facilitates tissue and sex associated microRNA discovery in zebrafish.
    Vaz C; Wee CW; Lee GP; Ingham PW; Tanavde V; Mathavan S
    BMC Genomics; 2015 Nov; 16():950. PubMed ID: 26574018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution after Whole-Genome Duplication: Teleost MicroRNAs.
    Desvignes T; Sydes J; Montfort J; Bobe J; Postlethwait JH
    Mol Biol Evol; 2021 Jul; 38(8):3308-3331. PubMed ID: 33871629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel microRNA genes in freshwater and marine ecotypes of the three-spined stickleback (Gasterosteus aculeatus).
    Rastorguev SM; Nedoluzhko AV; Sharko FS; Boulygina ES; Sokolov AS; Gruzdeva NM; Skryabin KG; Prokhortchouk EB
    Mol Ecol Resour; 2016 Nov; 16(6):1491-1498. PubMed ID: 27238497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs.
    Nepal C; Coolen M; Hadzhiev Y; Cussigh D; Mydel P; Steen VM; Carninci P; Andersen JB; Bally-Cuif L; Müller F; Lenhard B
    Nucleic Acids Res; 2016 Apr; 44(7):3070-81. PubMed ID: 26673698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The developmental miRNA profiles of zebrafish as determined by small RNA cloning.
    Chen PY; Manninga H; Slanchev K; Chien M; Russo JJ; Ju J; Sheridan R; John B; Marks DS; Gaidatzis D; Sander C; Zavolan M; Tuschl T
    Genes Dev; 2005 Jun; 19(11):1288-93. PubMed ID: 15937218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miRNAs associated with immune response in teleost fish.
    Andreassen R; Høyheim B
    Dev Comp Immunol; 2017 Oct; 75():77-85. PubMed ID: 28254620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.
    Trontti K; Väänänen J; Sipilä T; Greco D; Hovatta I
    RNA; 2018 May; 24(5):643-655. PubMed ID: 29445025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic divergence between nine- and three-spined sticklebacks.
    Guo B; Chain FJ; Bornberg-Bauer E; Leder EH; Merilä J
    BMC Genomics; 2013 Nov; 14(1):756. PubMed ID: 24188282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of miRNA transcriptome during gonadal development of zebrafish.
    Presslauer C; Tilahun Bizuayehu T; Kopp M; Fernandes JM; Babiak I
    Sci Rep; 2017 Mar; 7():43850. PubMed ID: 28262836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae.
    Hung IC; Hsiao YC; Sun HS; Chen TM; Lee SJ
    BMC Genomics; 2016 Nov; 17(1):922. PubMed ID: 27846817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae.
    Biryukova I; Ye T; Levashina E
    BMC Genomics; 2014 Jul; 15(1):557. PubMed ID: 24997592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread roles of microRNAs during zebrafish development and beyond.
    Mishima Y
    Dev Growth Differ; 2012 Jan; 54(1):55-65. PubMed ID: 22150108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved microRNA editing in mammalian evolution, development and disease.
    Warnefors M; Liechti A; Halbert J; Valloton D; Kaessmann H
    Genome Biol; 2014 Jun; 15(6):R83. PubMed ID: 24964909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of miRNA gene expression in zebrafish embryos by in situ hybridization to microRNA primary transcripts.
    He X; Yan YL; DeLaurier A; Postlethwait JH
    Zebrafish; 2011 Mar; 8(1):1-8. PubMed ID: 21288128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.