These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30850673)

  • 1. Limits of Babinet's principle for solid and hollow plasmonic antennas.
    Horák M; Křápek V; Hrtoň M; Konečná A; Ligmajer F; Stöger-Pollach M; Šamořil T; Paták A; Édes Z; Metelka O; Babocký J; Šikola T
    Sci Rep; 2019 Mar; 9(1):4004. PubMed ID: 30850673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-field spectroscopic properties of complementary gold nanostructures: applicability of Babinet's principle in the optical region.
    Mizobata H; Ueno K; Misawa H; Okamoto H; Imura K
    Opt Express; 2017 Mar; 25(5):5279-5289. PubMed ID: 28380791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental test of Babinet's principle in matter-wave diffraction.
    Kim LY; Lee JH; Kim YT; Park S; Lee CY; Schöllkopf W; Zhao BS
    Phys Chem Chem Phys; 2021 Apr; 23(13):8030-8036. PubMed ID: 33587734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocity and Babinet's principles applied to the enhancement of the electric and magnetic local density of states in integrated plasmonics on silicon photonics.
    Meza-Olivo AA; Garay-Palmett K; Blaize S; Salas-Montiel R
    Appl Opt; 2018 Oct; 57(30):9155-9163. PubMed ID: 30461905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle.
    Bitzer A; Ortner A; Merbold H; Feurer T; Walther M
    Opt Express; 2011 Jan; 19(3):2537-45. PubMed ID: 21369073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Babinet's principle for mutual intensity.
    Sukhov S; Batarseh M; Naraghi RR; Gemar H; Tamasan AC; Dogariu A
    Opt Lett; 2017 Oct; 42(19):3980-3983. PubMed ID: 28957177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and observation of the breakdown of Babinet's principle in complementary spoof surface plasmon polariton structures.
    Itami G; Sakai O
    Sci Rep; 2020 Jul; 10(1):11027. PubMed ID: 32620826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic jets from Babinet's cuboid structures in the reflection mode.
    Minin IV; Minin OV; Nefedov IS
    Opt Lett; 2016 Feb; 41(4):785-7. PubMed ID: 26872188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Babinet's principle and diffraction associated with an arbitrary particle.
    Sun B; Yang P; Kattawar GW; Mishchenko MI
    Opt Lett; 2017 Dec; 42(23):5026-5029. PubMed ID: 29216171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant optical excitations in complementary plasmonic nanostructures.
    Rossouw D; Botton GA
    Opt Express; 2012 Mar; 20(7):6968-73. PubMed ID: 22453375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-numerical-aperture image simulation using Babinet's principle.
    Yang SH; Milster T; Park JR; Zhang J
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1012-23. PubMed ID: 20448767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector.
    Lee D; Kim DS
    Sci Rep; 2016 Jan; 6():18935. PubMed ID: 26740335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase retrieval and diffractive imaging based on Babinet's principle and complementary random sampling.
    Cheng ZJ; Wang BY; Xie YY; Lu YJ; Yue QY; Guo CS
    Opt Express; 2015 Nov; 23(22):28874-82. PubMed ID: 26561156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridized metal slit eigenmodes as an illustration of Babinet's principle.
    Ögüt B; Vogelgesang R; Sigle W; Talebi N; Koch CT; van Aken PA
    ACS Nano; 2011 Aug; 5(8):6701-6. PubMed ID: 21761856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sum rule for the transmission cross section of apertures in thin opaque screens.
    Gustafsson M
    Opt Lett; 2009 Jul; 34(13):2003-5. PubMed ID: 19571980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing and controlling photothermal heat generation in plasmonic nanostructures.
    Coppens ZJ; Li W; Walker DG; Valentine JG
    Nano Lett; 2013 Mar; 13(3):1023-8. PubMed ID: 23437919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas.
    Křápek V; Koh AL; Břínek L; Hrtoň M; Tomanec O; Kalousek R; Maier SA; Šikola T
    Opt Express; 2015 May; 23(9):11855-67. PubMed ID: 25969276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet's principle for sub-skin-depth regime.
    Koo S; Kumar MS; Shin J; Kim D; Park N
    Phys Rev Lett; 2009 Dec; 103(26):263901. PubMed ID: 20366312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.