BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30850848)

  • 41. Schizophrenia-associated differential DNA methylation in brain is distributed across the genome and annotated to MAD1L1, a locus at which DNA methylation and transcription phenotypes share genetic variation with schizophrenia risk.
    McKinney BC; McClain LL; Hensler CM; Wei Y; Klei L; Lewis DA; Devlin B; Wang J; Ding Y; Sweet RA
    Transl Psychiatry; 2022 Aug; 12(1):340. PubMed ID: 35987687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PGA: post-GWAS analysis for disease gene identification.
    Lin JR; Jaroslawicz D; Cai Y; Zhang Q; Wang Z; Zhang ZD
    Bioinformatics; 2018 May; 34(10):1786-1788. PubMed ID: 29300829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.
    Fan Q; Wang W; Hao J; He A; Wen Y; Guo X; Wu C; Ning Y; Wang X; Wang S; Zhang F
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Aug; 78():149-152. PubMed ID: 28552732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple Functional Variants at 13q14 Risk Locus for Osteoporosis Regulate RANKL Expression Through Long-Range Super-Enhancer.
    Zhu DL; Chen XF; Hu WX; Dong SS; Lu BJ; Rong Y; Chen YX; Chen H; Thynn HN; Wang NN; Guo Y; Yang TL
    J Bone Miner Res; 2018 Jul; 33(7):1335-1346. PubMed ID: 29528523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TS: a powerful truncated test to detect novel disease associated genes using publicly available gWAS summary data.
    Zhang J; Guo X; Gonzales S; Yang J; Wang X
    BMC Bioinformatics; 2020 May; 21(1):172. PubMed ID: 32366212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations.
    Walsh AM; Whitaker JW; Huang CC; Cherkas Y; Lamberth SL; Brodmerkel C; Curran ME; Dobrin R
    Genome Biol; 2016 Apr; 17():79. PubMed ID: 27140173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The open targets post-GWAS analysis pipeline.
    Peat G; Jones W; Nuhn M; Marugán JC; Newell W; Dunham I; Zerbino D
    Bioinformatics; 2020 May; 36(9):2936-2937. PubMed ID: 31930349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Putative enhancer sites in the bovine genome are enriched with variants affecting complex traits.
    Wang M; Hancock TP; MacLeod IM; Pryce JE; Cocks BG; Hayes BJ
    Genet Sel Evol; 2017 Jul; 49(1):56. PubMed ID: 28683716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs.
    Guo X; Su G; Christensen OF; Janss L; Lund MS
    BMC Genomics; 2016 Jun; 17():468. PubMed ID: 27317562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts.
    Mullin BH; Zhu K; Xu J; Brown SJ; Mullin S; Tickner J; Pavlos NJ; Dudbridge F; Walsh JP; Wilson SG
    J Bone Miner Res; 2018 Jun; 33(6):1044-1051. PubMed ID: 29473973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive gene- and pathway-trait association testing with GWAS summary statistics.
    Kwak IY; Pan W
    Bioinformatics; 2016 Apr; 32(8):1178-84. PubMed ID: 26656570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits.
    Bakshi A; Zhu Z; Vinkhuyzen AA; Hill WD; McRae AF; Visscher PM; Yang J
    Sci Rep; 2016 Sep; 6():32894. PubMed ID: 27604177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association mapping in plants in the post-GWAS genomics era.
    Gupta PK; Kulwal PL; Jaiswal V
    Adv Genet; 2019; 104():75-154. PubMed ID: 31200809
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
    Guo B; Wu B
    Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. VIMCO: variational inference for multiple correlated outcomes in genome-wide association studies.
    Shi X; Jiao Y; Yang Y; Cheng CY; Yang C; Lin X; Liu J
    Bioinformatics; 2019 Oct; 35(19):3693-3700. PubMed ID: 30851102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.