These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30851275)
1. Increased infection severity in downstream cities in infectious disease transmission and tourists surveillance analysis. Zhang N; Zhao P; Li Y J Theor Biol; 2019 Jun; 470():20-29. PubMed ID: 30851275 [TBL] [Abstract][Full Text] [Related]
2. Determinants of Short-term Movement in a Developing Region and Implications for Disease Transmission. Kraay ANM; Trostle J; Brouwer AF; Cevallos W; Eisenberg JNS Epidemiology; 2018 Jan; 29(1):117-125. PubMed ID: 28901976 [TBL] [Abstract][Full Text] [Related]
3. Spreading disease with transport-related infection. Cui J; Takeuchi Y; Saito Y J Theor Biol; 2006 Apr; 239(3):376-90. PubMed ID: 16219328 [TBL] [Abstract][Full Text] [Related]
4. The effect of public health interventions on the spread of influenza among cities. Lee JM; Choi D; Cho G; Kim Y J Theor Biol; 2012 Jan; 293():131-42. PubMed ID: 22033506 [TBL] [Abstract][Full Text] [Related]
5. Integrated travel network model for studying epidemics: Interplay between journeys and epidemic. Ruan Z; Wang C; Hui PM; Liu Z Sci Rep; 2015 Jun; 5():11401. PubMed ID: 26073191 [TBL] [Abstract][Full Text] [Related]
7. Variation in human mobility and its impact on the risk of future COVID-19 outbreaks in Taiwan. Chang MC; Kahn R; Li YA; Lee CS; Buckee CO; Chang HH BMC Public Health; 2021 Jan; 21(1):226. PubMed ID: 33504339 [TBL] [Abstract][Full Text] [Related]
8. Travel epidemiology: WHO perspective. Gezairy HA Int J Antimicrob Agents; 2003 Feb; 21(2):86-8. PubMed ID: 12615368 [TBL] [Abstract][Full Text] [Related]
9. Sampling for global epidemic models and the topology of an international airport network. Bobashev G; Morris RJ; Goedecke DM PLoS One; 2008 Sep; 3(9):e3154. PubMed ID: 18776932 [TBL] [Abstract][Full Text] [Related]
10. Global stability of a transport-related infection model with general incidence rate in two heterogeneous cities. Liu L; Liu X Biosystems; 2014 Dec; 126():41-51. PubMed ID: 25304154 [TBL] [Abstract][Full Text] [Related]
11. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease. Scalia Tomba G; Wallinga J Math Biosci; 2008; 214(1-2):70-2. PubMed ID: 18387639 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment. Li J; Zou X J Math Biol; 2010 May; 60(5):645-86. PubMed ID: 19568751 [TBL] [Abstract][Full Text] [Related]
13. International travel between global urban centres vulnerable to yellow fever transmission. Brent SE; Watts A; Cetron M; German M; Kraemer MU; Bogoch II; Brady OJ; Hay SI; Creatore MI; Khan K Bull World Health Organ; 2018 May; 96(5):343-354B. PubMed ID: 29875519 [TBL] [Abstract][Full Text] [Related]
14. Climate change impact on migration, travel, travel destinations and the tourism industry. Semenza JC; Ebi KL J Travel Med; 2019 Jun; 26(5):. PubMed ID: 30976790 [TBL] [Abstract][Full Text] [Related]
15. Travel-related control measures to contain the COVID-19 pandemic: a rapid review. Burns J; Movsisyan A; Stratil JM; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Pfadenhauer LM; von Philipsborn P; Sell K; Voss S; Rehfuess E Cochrane Database Syst Rev; 2020 Oct; 10():CD013717. PubMed ID: 33502002 [TBL] [Abstract][Full Text] [Related]
16. A probabilistic census-travel model to predict introduction sites of exotic plant, animal and human pathogens. Gottwald T; Luo W; Posny D; Riley T; Louws F Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1776):20180260. PubMed ID: 31104596 [TBL] [Abstract][Full Text] [Related]
17. Transmission of infectious diseases en route to habitat hotspots. Benavides J; Walsh PD; Meyers LA; Raymond M; Caillaud D PLoS One; 2012; 7(2):e31290. PubMed ID: 22363606 [TBL] [Abstract][Full Text] [Related]
18. Implications of a travel connectivity-based approach for infectious disease transmission risks in Oceania. Cadavid Restrepo A; Furuya-Kanamori L; Mayfield H; Nilles E; Lau CL BMJ Open; 2021 Aug; 11(8):e046206. PubMed ID: 34385235 [TBL] [Abstract][Full Text] [Related]
19. Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread. Giles JR; Cummings DAT; Grenfell BT; Tatem AJ; Erbach-Schoenberg EZ; Metcalf C; Wesolowski A PLoS Comput Biol; 2021 Aug; 17(8):e1009127. PubMed ID: 34375331 [TBL] [Abstract][Full Text] [Related]
20. Epidemiological implications of mobility between a large urban centre and smaller satellite cities. Arino J; Portet S J Math Biol; 2015 Nov; 71(5):1243-65. PubMed ID: 25586236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]