These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30851605)

  • 1. Interpretation of a fire scene with ultraviolet light: An assessment of the possible utilisation of ultraviolet light at fire scenes and subsequent recommendations for procedures.
    Ljungkvist E; Thomsen B
    Forensic Sci Int; 2019 Apr; 297():284-292. PubMed ID: 30851605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field test kits for collection of ignitable liquids and ignitable liquid residues used by the NSW fire scene investigators.
    Burda K; Black M; Djulamerovic S; Darwen K; Hollier K
    Forensic Sci Int; 2016 Jul; 264():70-81. PubMed ID: 27037662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical tools for the analysis of fire debris. A review: 2008-2015.
    Martín-Alberca C; Ortega-Ojeda FE; García-Ruiz C
    Anal Chim Acta; 2016 Jul; 928():1-19. PubMed ID: 27251852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire investigation and ignitable liquid residue analysis--a review: 2001-2007.
    Sandercock PM
    Forensic Sci Int; 2008 Apr; 176(2-3):93-110. PubMed ID: 17949931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid alteration of several ignitable liquids of potential use in arsons.
    Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C
    Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The forensic examination of structural fires in Victoria, Australia: Decision-making processes and impact on judicial outcomes.
    Woodman PA; Ballantyne KN; Julian R; Spiranovic C
    Sci Justice; 2021 Jul; 61(4):369-377. PubMed ID: 34172125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evaluation of the extent of transporting or "tracking" an identifiable ignitable liquid (gasoline) throughout fire scenes during the investigative process.
    Armstrong A; Babrauskas V; Holmes DL; Martin C; Powell R; Riggs S; Young LD
    J Forensic Sci; 2004 Jul; 49(4):741-8. PubMed ID: 15317188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of kerosene combustion atmosphere on the mild steel oxide layer.
    Xie D; Hong H; Duo S; Li Q
    Sci Rep; 2022 Jan; 12(1):379. PubMed ID: 35013478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A UK-based ground truth data set of GCMS analysed ignitable liquid samples - a template for making chromatographic data accessible as an open source data set.
    Miller J; Puch-Solis R; Mat Desa WNS; Nic Daeid N
    Data Brief; 2022 Dec; 45():108670. PubMed ID: 36425998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Recent advancements and moving trends in chemical analysis of fire debris.
    Low Y; Tyrrell E; Gillespie E; Quigley C
    Forensic Sci Int; 2023 Apr; 345():111623. PubMed ID: 36921374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternate light sources in the detection of bone after an accelerated fire: a pilot study.
    Gallant AS
    J Forensic Sci; 2013 Jan; 58 Suppl 1():S221-6. PubMed ID: 22994928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.