These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 30851642)
1. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Pinto L; Malfeito-Ferreira M; Quintieri L; Silva AC; Baruzzi F Int J Food Microbiol; 2019 May; 296():65-74. PubMed ID: 30851642 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368 [TBL] [Abstract][Full Text] [Related]
3. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040 [TBL] [Abstract][Full Text] [Related]
4. Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects. Hall ME; Loeb GM; Cadle-Davidson L; Evans KJ; Wilcox WF Phytopathology; 2018 Dec; 108(12):1429-1442. PubMed ID: 29969063 [TBL] [Abstract][Full Text] [Related]
5. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. Mounir M; Shafiei R; Zarmehrkhorshid R; Hamouda A; Ismaili Alaoui M; Thonart P J Biosci Bioeng; 2016 Feb; 121(2):166-71. PubMed ID: 26253254 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Moens F; Lefeber T; De Vuyst L Appl Environ Microbiol; 2014 Mar; 80(6):1848-57. PubMed ID: 24413595 [TBL] [Abstract][Full Text] [Related]
8. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696 [TBL] [Abstract][Full Text] [Related]
9. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. Sainz F; Navarro D; Mateo E; Torija MJ; Mas A Int J Food Microbiol; 2016 Apr; 222():40-7. PubMed ID: 26848948 [TBL] [Abstract][Full Text] [Related]
10. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
11. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Camu N; De Winter T; Verbrugghe K; Cleenwerck I; Vandamme P; Takrama JS; Vancanneyt M; De Vuyst L Appl Environ Microbiol; 2007 Mar; 73(6):1809-24. PubMed ID: 17277227 [TBL] [Abstract][Full Text] [Related]
12. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Pereira GV; Miguel MG; Ramos CL; Schwan RF Appl Environ Microbiol; 2012 Aug; 78(15):5395-405. PubMed ID: 22636007 [TBL] [Abstract][Full Text] [Related]
13. Acetic acid bacteria spoilage of bottled red wine -- a review. Bartowsky EJ; Henschke PA Int J Food Microbiol; 2008 Jun; 125(1):60-70. PubMed ID: 18237809 [TBL] [Abstract][Full Text] [Related]
14. Temporal and Spatial Distribution of the Acetic Acid Bacterium Communities throughout the Wooden Casks Used for the Fermentation and Maturation of Lambic Beer Underlines Their Functional Role. De Roos J; Verce M; Aerts M; Vandamme P; De Vuyst L Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352086 [TBL] [Abstract][Full Text] [Related]
15. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions. Zheng Y; Zhang R; Yin H; Bai X; Chang Y; Xia M; Wang M Appl Microbiol Biotechnol; 2017 Sep; 101(18):7007-7016. PubMed ID: 28770302 [TBL] [Abstract][Full Text] [Related]
16. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Ioriatti C; Guzzon R; Anfora G; Ghidoni F; Mazzoni V; Villegas TR; Dalton DT; Walton VM J Econ Entomol; 2018 Feb; 111(1):283-292. PubMed ID: 29202199 [TBL] [Abstract][Full Text] [Related]
17. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Visintin S; Alessandria V; Valente A; Dolci P; Cocolin L Int J Food Microbiol; 2016 Jan; 216():69-78. PubMed ID: 26425801 [TBL] [Abstract][Full Text] [Related]
18. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022 [TBL] [Abstract][Full Text] [Related]
19. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis. Wu X; Yao H; Liu Q; Zheng Z; Cao L; Mu D; Wang H; Jiang S; Li X Appl Biochem Biotechnol; 2018 Sep; 186(1):217-232. PubMed ID: 29552715 [TBL] [Abstract][Full Text] [Related]
20. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Papalexandratou Z; Lefeber T; Bahrim B; Lee OS; Daniel HM; De Vuyst L Food Microbiol; 2013 Sep; 35(2):73-85. PubMed ID: 23664257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]