These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30851762)

  • 1. Applications of fundus autofluorescence and widefield angiography in clinical practice.
    Banda HK; Shah GK; Blinder KJ
    Can J Ophthalmol; 2019 Feb; 54(1):11-19. PubMed ID: 30851762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence imaging in hereditary retinal diseases.
    Pichi F; Abboud EB; Ghazi NG; Khan AO
    Acta Ophthalmol; 2018 Aug; 96(5):e549-e561. PubMed ID: 29098804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S; Sherman J
    Optom Vis Sci; 2012 May; 89(5):E575-84. PubMed ID: 22446719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal imaging characteristics of congenital grouped hyper- and hypo-pigmented fundus lesions.
    Wang H; Ly A; Yapp M; Assaad N; Kalloniatis M
    Clin Exp Optom; 2020 Sep; 103(5):641-647. PubMed ID: 31769080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF CONGENITAL SIMPLE HAMARTOMA OF THE RETINAL PIGMENT EPITHELIUM.
    Arjmand P; Elimimian EB; Say EAT; Shields CL
    Retin Cases Brief Rep; 2019; 13(4):357-360. PubMed ID: 28489706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence.
    Pinilla I; Fernández-Sánchez L; Segura FJ; Sánchez-Cano AI; Tamarit JM; Fuentes-Broto L; Eells JT; Lax P; Cuenca N
    Exp Eye Res; 2016 Sep; 150():122-34. PubMed ID: 26521765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical application of ultra-widefield fundus autofluorescence.
    Xu A; Chen C
    Int Ophthalmol; 2021 Feb; 41(2):727-741. PubMed ID: 33040254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ULTRA-WIDEFIELD MULTIMODAL IMAGING OF PRIMARY VITREORETINAL LYMPHOMA.
    Lavine JA; Singh AD; Sharma S; Baynes K; Lowder CY; Srivastava SK
    Retina; 2019 Oct; 39(10):1861-1871. PubMed ID: 30044267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lessons learned from quantitative fundus autofluorescence.
    Sparrow JR; Duncker T; Schuerch K; Paavo M; de Carvalho JRL
    Prog Retin Eye Res; 2020 Jan; 74():100774. PubMed ID: 31472235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Follow-Up of Fundus Autofluorescence Imaging Using Wide-Field Scanning Laser Ophthalmoscopy.
    Duisdieker V; Fleckenstein M; Zilkens KM; Steinberg JS; Holz FG; Schmitz-Valckenberg S
    Ophthalmologica; 2015; 234(4):218-26. PubMed ID: 26394020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal imaging characteristics of acute macular neuroretinopathy.
    Saurabh K; Roy R; Shah D; Goel S; Mishra S; Senger D
    Indian J Ophthalmol; 2019 Mar; 67(3):403-404. PubMed ID: 30777967
    [No Abstract]   [Full Text] [Related]  

  • 12. Fundus autofluorescence imaging: review and perspectives.
    Schmitz-Valckenberg S; Holz FG; Bird AC; Spaide RF
    Retina; 2008 Mar; 28(3):385-409. PubMed ID: 18327131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined hamartoma of the retina and retinal pigment epithelium with hypo-autofluorescence and cystic degeneration at the macula.
    Dave TV; Dave V; Pappuru RR
    Clin Exp Optom; 2014 Sep; 97(5):475-6. PubMed ID: 25138752
    [No Abstract]   [Full Text] [Related]  

  • 14. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND WIDEFIELD FUNDUS AUTOFLUORESCENCE IN PUNCTATE INNER CHOROIDOPATHY.
    Klufas MA; OʼHearn T; Sarraf D
    Retin Cases Brief Rep; 2015; 9(4):323-6. PubMed ID: 26421890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accentuation of optical coherence tomography angiography projection artefacts on hyper-reflective retinal layers.
    Shahlaee A; Samara WA; Sridhar J; Kasi SK; Hsu J; Ho AC
    Acta Ophthalmol; 2018 Nov; 96(7):e883-e884. PubMed ID: 27369697
    [No Abstract]   [Full Text] [Related]  

  • 16. Imaging of Hydroxychloroquine Toxicity with Fluorescence Lifetime Imaging Ophthalmoscopy.
    Sauer L; Calvo CM; Vitale AS; Henrie N; Milliken CM; Bernstein PS
    Ophthalmol Retina; 2019 Oct; 3(10):814-825. PubMed ID: 31345727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-wide-Field Fundus Autofluorescence for the Detection of Inherited Retinal Disease in Difficult-to-Examine Children.
    Khurram Butt D; Gurbaxani A; Kozak I
    J Pediatr Ophthalmol Strabismus; 2019 Nov; 56(6):383-387. PubMed ID: 31743407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational Retinal Imaging.
    Orellana-Rios J; Yokoyama S; Bhuiyan A; Gao L; Otero-Marquez O; Smith RT
    Asia Pac J Ophthalmol (Phila); 2020; 9(3):269-277. PubMed ID: 32487917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foveolar simple retinal pigment epithelial hamartoma.
    Pujari A; Temkar S; Agarwal S; Garg G; Chawla R; Kumar A
    Indian J Ophthalmol; 2018 Jul; 66(7):999-1000. PubMed ID: 29941750
    [No Abstract]   [Full Text] [Related]  

  • 20. Multicolor imaging findings in torpedo maculopathy.
    Venkatesh R; Bavaharan B; Yadav NK
    Indian J Ophthalmol; 2019 Feb; 67(2):295-297. PubMed ID: 30672501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.