These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 30852154)
1. A theoretical model to estimate inactivation effects of OH radicals on marine Vibrio sp. in bubble-shock interaction. Huang Y; Wang J; Abe A; Wang Y; Du T; Huang C Ultrason Sonochem; 2019 Jul; 55():359-368. PubMed ID: 30852154 [TBL] [Abstract][Full Text] [Related]
2. Fundamental study of sterilization effects on marine Vibrio sp. in a cylindrical water chamber with supply of only underwater shock waves. Wang J; Abe A; Wang Y; Huang C Ultrason Sonochem; 2018 Apr; 42():541-550. PubMed ID: 29429701 [TBL] [Abstract][Full Text] [Related]
3. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748 [TBL] [Abstract][Full Text] [Related]
4. Lithotripter shock wave interaction with a bubble near various biomaterials. Ohl SW; Klaseboer E; Szeri AJ; Khoo BC Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337 [TBL] [Abstract][Full Text] [Related]
5. Remote delivery of hydroxyl radicals via secondary chemistry of a nonthermal plasma effluent. Plimpton SR; Gołkowski M; Mitchell DG; Austin C; Eaton SS; Eaton GR; Gołkowski C; Voskuil M Biotechnol Bioeng; 2013 Jul; 110(7):1936-44. PubMed ID: 23359480 [TBL] [Abstract][Full Text] [Related]
6. Ultrasonic waveform upshot on mass variation within single cavitation bubble: Investigation of physical and chemical transformations. Kerboua K; Hamdaoui O Ultrason Sonochem; 2018 Apr; 42():508-516. PubMed ID: 29429697 [TBL] [Abstract][Full Text] [Related]
7. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy. Wang KG Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825 [TBL] [Abstract][Full Text] [Related]
8. Physical and chemical characterization of shock-induced cavitation. Parizot L; Dutilleul H; Galvez ME; Chave T; Da Costa P; Nikitenko SI Ultrason Sonochem; 2020 Dec; 69():105270. PubMed ID: 32736303 [TBL] [Abstract][Full Text] [Related]
9. Lethality of shock pressures to a marine Vibrio sp. isolated from a ship's ballast water. Mimura H; Abe A; Katakura R; Kawasaki H; Yoshida K; Ishida H Biocontrol Sci; 2006 Dec; 11(4):159-66. PubMed ID: 17190270 [TBL] [Abstract][Full Text] [Related]
10. Development and interactions of two inert gas bubbles during decompression. Jiang Y; Homer LD; Thalmann ED Undersea Hyperb Med; 1996 Sep; 23(3):131-40. PubMed ID: 8931280 [TBL] [Abstract][Full Text] [Related]
11. Theoretical study of single-bubble sonochemistry. Yasui K; Tuziuti T; Sivakumar M; Iida Y J Chem Phys; 2005 Jun; 122(22):224706. PubMed ID: 15974702 [TBL] [Abstract][Full Text] [Related]
12. Bactericidal effect of hydroxyl radicals generated by the sonolysis and photolysis of hydrogen peroxide for endodontic applications. Ibi H; Hayashi M; Yoshino F; Tamura M; Yoshida A; Kobayashi Y; Shimizu K; Lee MC; Imai K; Ogiso B Microb Pathog; 2017 Feb; 103():65-70. PubMed ID: 27998731 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684 [TBL] [Abstract][Full Text] [Related]
14. Deconvolution of acoustically detected bubble-collapse shock waves. Johansen K; Song JH; Johnston K; Prentice P Ultrasonics; 2017 Jan; 73():144-153. PubMed ID: 27657479 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Visualization of Free Radicals at Single Oxygen Bubbles using Chemiluminescence. Xu Y; Liu K; Jin R; Jiang D; Fang D Chem Asian J; 2021 Dec; 16(24):4049-4052. PubMed ID: 34658163 [TBL] [Abstract][Full Text] [Related]
16. Response of constrained and unconstrained bubbles to lithotripter shock wave pulses. Ding Z; Gracewski SM J Acoust Soc Am; 1994 Dec; 96(6):3636-44. PubMed ID: 7814766 [TBL] [Abstract][Full Text] [Related]
17. An Experimental Study on Bubble Collapsing Effect of Nanobubble Using Ultrasonic Wave. Kim M; Song S; Kim W; Han JG J Nanosci Nanotechnol; 2020 Jan; 20(1):636-642. PubMed ID: 31383225 [TBL] [Abstract][Full Text] [Related]
18. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption. Wang M; Yuan W Ultrason Sonochem; 2016 Jan; 28():7-14. PubMed ID: 26384877 [TBL] [Abstract][Full Text] [Related]
19. Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave. Yoshida K; Fujikawa T; Watanabe Y J Acoust Soc Am; 2011 Jul; 130(1):135-44. PubMed ID: 21786884 [TBL] [Abstract][Full Text] [Related]
20. A method for predicting the number of active bubbles in sonochemical reactors. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]