These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30852238)
1. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). Han L; Xiao C; Xiao B; Wang M; Liu J; Bhanbhro N; Khan A; Wang H; Wang H; Yang C Plant Physiol Biochem; 2019 May; 138():58-64. PubMed ID: 30852238 [TBL] [Abstract][Full Text] [Related]
2. [pH and ion balance in wheat-wheatgrass under salt- or alkali stress]. Yang CW; Li CY; Zhang ML; Liu J; Ju M; Shi DC Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):1000-5. PubMed ID: 18655584 [TBL] [Abstract][Full Text] [Related]
3. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Hu H; He J; Zhao J; Ou X; Li H; Ru Z Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523 [TBL] [Abstract][Full Text] [Related]
4. Role of TaALMT1 malate-GABA transporter in alkaline pH tolerance of wheat. Kamran M; Ramesh SA; Gilliham M; Tyerman SD; Bose J Plant Cell Environ; 2020 Oct; 43(10):2443-2459. PubMed ID: 32666573 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Mahajan MM; Goyal E; Singh AK; Gaikwad K; Kanika K Plant Physiol Biochem; 2017 Dec; 121():128-139. PubMed ID: 29102901 [TBL] [Abstract][Full Text] [Related]
6. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969 [TBL] [Abstract][Full Text] [Related]
7. Root-mediated acidification and resistance to low calcium improve wheat (Triticum aestivum) performance in saline-sodic conditions. Saqib M; Abbas G; Akhtar J Plant Physiol Biochem; 2020 Nov; 156():201-208. PubMed ID: 32977176 [TBL] [Abstract][Full Text] [Related]
8. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. Guo R; Yang Z; Li F; Yan C; Zhong X; Liu Q; Xia X; Li H; Zhao L BMC Plant Biol; 2015 Jul; 15():170. PubMed ID: 26149720 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. Li G; Peng X; Xuan H; Wei L; Yang Y; Guo T; Kang G J Proteome Res; 2013 Nov; 12(11):4846-61. PubMed ID: 24074260 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang Q; Li X; Niu F; Sun X; Hu Z; Zhang H Proteomics; 2017 Apr; 17(8):. PubMed ID: 28191739 [TBL] [Abstract][Full Text] [Related]
11. Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. Zhao Z; Liu J; Jia R; Bao S; Haixia ; Chen X J Proteomics; 2019 Feb; 193():10-26. PubMed ID: 30576833 [TBL] [Abstract][Full Text] [Related]
12. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Liu S; Cheng Y; Zhang X; Guan Q; Nishiuchi S; Hase K; Takano T Plant Mol Biol; 2007 May; 64(1-2):49-58. PubMed ID: 17245561 [TBL] [Abstract][Full Text] [Related]
13. Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Zhao Q; Suo J; Chen S; Jin Y; Ma X; Yin Z; Zhang Y; Wang T; Luo J; Jin W; Zhang X; Zhou Z; Dai S Sci Rep; 2016 Sep; 6():32717. PubMed ID: 27596441 [TBL] [Abstract][Full Text] [Related]
14. Alpha Lipoic Acid as a Protective Mediator for Regulating the Defensive Responses of Wheat Plants against Sodic Alkaline Stress: Physiological, Biochemical and Molecular Aspects. Ramadan KMA; Alharbi MM; Alenzi AM; El-Beltagi HS; Darwish DBE; Aldaej MI; Shalaby TA; Mansour AT; El-Gabry YAE; Ibrahim MFM Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336669 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. Jia XY; Xu CY; Jing RL; Li RZ; Mao XG; Wang JP; Chang XP J Exp Bot; 2008; 59(4):739-51. PubMed ID: 18349049 [TBL] [Abstract][Full Text] [Related]
17. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. Al-Quraan NA; Sartawe FA; Qaryouti MM J Plant Physiol; 2013 Jul; 170(11):1003-9. PubMed ID: 23602379 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum. Navathe S; Singh S; Singh VK; Chand R; Mishra VK; Joshi AK Genes Genomics; 2019 Sep; 41(9):1027-1043. PubMed ID: 31140145 [TBL] [Abstract][Full Text] [Related]
19. Salt acclimation processes in wheat. Janda T; Darko É; Shehata S; Kovács V; Pál M; Szalai G Plant Physiol Biochem; 2016 Apr; 101():68-75. PubMed ID: 26854409 [TBL] [Abstract][Full Text] [Related]
20. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]