These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30852250)

  • 1. Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics.
    Jin M; Li Y; O'Laughlin R; Bittihn P; Pillus L; Tsimring LS; Hasty J; Hao N
    Cell Syst; 2019 Mar; 8(3):242-253.e3. PubMed ID: 30852250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The generational scalability of single-cell replicative aging.
    Liu P; Acar M
    Sci Adv; 2018 Jan; 4(1):eaao4666. PubMed ID: 29399632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform.
    Yu R; Jo MC; Dang W
    Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigenerational silencing dynamics control cell aging.
    Li Y; Jin M; O'Laughlin R; Bittihn P; Tsimring LS; Pillus L; Hasty J; Hao N
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11253-11258. PubMed ID: 29073021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast replicative aging model.
    He C; Zhou C; Kennedy BK
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt A):2690-2696. PubMed ID: 29524633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein biogenesis machinery is a driver of replicative aging in yeast.
    Janssens GE; Meinema AC; González J; Wolters JC; Schmidt A; Guryev V; Bischoff R; Wit EC; Veenhoff LM; Heinemann M
    Elife; 2015 Dec; 4():e08527. PubMed ID: 26422514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging roles for sphingolipids in cellular aging.
    Singh P; Li R
    Curr Genet; 2018 Aug; 64(4):761-767. PubMed ID: 29260307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
    Fine RD; Maqani N; Li M; Franck E; Smith JS
    Genetics; 2019 May; 212(1):75-91. PubMed ID: 30842210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replicative aging in yeast: the means to the end.
    Steinkraus KA; Kaeberlein M; Kennedy BK
    Annu Rev Cell Dev Biol; 2008; 24():29-54. PubMed ID: 18616424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paradigms and pitfalls of yeast longevity research.
    Sinclair DA
    Mech Ageing Dev; 2002 Apr; 123(8):857-67. PubMed ID: 12044934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?
    Zadrag-Tecza R; Skoneczna A
    Exp Gerontol; 2016 Nov; 84():29-39. PubMed ID: 27546186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable fate decision landscape underlies single-cell aging in yeast.
    Li Y; Jiang Y; Paxman J; O'Laughlin R; Klepin S; Zhu Y; Pillus L; Tsimring LS; Hasty J; Hao N
    Science; 2020 Jul; 369(6501):325-329. PubMed ID: 32675375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging.
    Crane MM; Chen KL; Blue BW; Kaeberlein M
    Proteomics; 2020 Mar; 20(5-6):e1800420. PubMed ID: 31385433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects of repair, resilience and retention of damage determine the conditions for replicative ageing.
    Borgqvist J; Welkenhuysen N; Cvijovic M
    Sci Rep; 2020 Jan; 10(1):1556. PubMed ID: 32005954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetics of aging in the yeast Saccharomyces cerevisiae.
    Jazwinski SM
    Genetica; 1993; 91(1-3):35-51. PubMed ID: 8125278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.