These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Residence time effects on technetium reduction in slag-based cementitious materials. Arai Y; Powell BA; Kaplan DI J Hazard Mater; 2018 Jan; 342():510-518. PubMed ID: 28881275 [TBL] [Abstract][Full Text] [Related]
8. Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. Otosaka S; Schwehr KA; Kaplan DI; Roberts KA; Zhang S; Xu C; Li HP; Ho YF; Brinkmeyer R; Yeager CM; Santschi PH Sci Total Environ; 2011 Sep; 409(19):3857-65. PubMed ID: 21641630 [TBL] [Abstract][Full Text] [Related]
9. Leaching and transport of technetium from reducing cementitious waste forms in field lysimeters. Santikari VP; Witmer M; Murdoch LC; Kaplan DI; Powell BA Sci Total Environ; 2022 Oct; 841():156596. PubMed ID: 35691349 [TBL] [Abstract][Full Text] [Related]
10. Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Karanfil T; Moro EC; Serkiz SM Environ Technol; 2005 Nov; 26(11):1255-62. PubMed ID: 16335600 [TBL] [Abstract][Full Text] [Related]
11. Evolution of technetium speciation in reducing grout. Lukens WW; Bucher JI; Shuh DK; Edelstein NM Environ Sci Technol; 2005 Oct; 39(20):8064-70. PubMed ID: 16295876 [TBL] [Abstract][Full Text] [Related]
13. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes. Li J; Zhou H; Wang Y; Xie X; Qian K J Contam Hydrol; 2017 Jun; 201():39-47. PubMed ID: 28495233 [TBL] [Abstract][Full Text] [Related]
14. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers. Mu W; Li X; Liu G; Yu Q; Xie X; Wei H; Jian Y Dalton Trans; 2016 Jan; 45(2):753-9. PubMed ID: 26631449 [TBL] [Abstract][Full Text] [Related]
15. Development of a Geochemical Speciation Model for Use in Evaluating Leaching from a Cementitious Radioactive Waste Form. Chen Z; Zhang P; Brown KG; Branch JL; van der Sloot HA; Meeussen JCL; Delapp RC; Um W; Kosson DS Environ Sci Technol; 2021 Jul; 55(13):8642-8653. PubMed ID: 34132538 [TBL] [Abstract][Full Text] [Related]
16. Study of the Suitability of Different Types of Slag and Its Influence on the Quality of Green Grouts Obtained by Partial Replacement of Cement. Perez-Garcia F; Parron-Rubio ME; Garcia-Manrique JM; Rubio-Cintas MD Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974784 [TBL] [Abstract][Full Text] [Related]
17. Radioiodine concentrated in a wetland. Kaplan DI; Zhang S; Roberts KA; Schwehr K; Xu C; Creeley D; Ho YF; Li HP; Yeager CM; Santschi PH J Environ Radioact; 2014 May; 131():57-61. PubMed ID: 24075117 [TBL] [Abstract][Full Text] [Related]
18. Removal capacity and chemical speciation of groundwater iodide (I Li D; Kaplan DI; Sams A; Powell BA; Knox AS J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621 [TBL] [Abstract][Full Text] [Related]
19. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040 [TBL] [Abstract][Full Text] [Related]
20. Chemical stabilization of chromate in blast furnace slag mixed cementitious materials. Meena AH; Kaplan DI; Powell BA; Arai Y Chemosphere; 2015 Nov; 138():247-52. PubMed ID: 26086810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]