These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30852633)

  • 1. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images.
    Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X
    Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer].
    Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer.
    Park H; Kim KA; Jung JH; Rhie J; Choi SY
    Eur Radiol; 2020 Aug; 30(8):4201-4211. PubMed ID: 32270317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging.
    Liu S; Wen L; Hou J; Nie S; Zhou J; Cao F; Lu Q; Qin Y; Fu Y; Yu X
    Abdom Radiol (NY); 2019 Aug; 44(8):2689-2698. PubMed ID: 31030244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).
    Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R
    Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance.
    De Cecco CN; Ganeshan B; Ciolina M; Rengo M; Meinel FG; Musio D; De Felice F; Raffetto N; Tombolini V; Laghi A
    Invest Radiol; 2015 Apr; 50(4):239-45. PubMed ID: 25501017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer].
    Wan LJ; Zhang CD; Zhang HM; Meng YK; Ye F; Liu Y; Zhao XM; Zhou CW
    Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):837-843. PubMed ID: 31770851
    [No Abstract]   [Full Text] [Related]  

  • 10. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.
    Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X
    Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer.
    Aker M; Ganeshan B; Afaq A; Wan S; Groves AM; Arulampalam T
    Dis Colon Rectum; 2019 Feb; 62(2):163-170. PubMed ID: 30451764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy.
    De Felice F; Magnante AL; Musio D; Ciolina M; De Cecco CN; Rengo M; Laghi A; Tombolini V
    Eur J Surg Oncol; 2017 Jul; 43(7):1324-1329. PubMed ID: 28363512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy.
    Yang C; Jiang ZK; Liu LH; Zeng MS
    Int J Colorectal Dis; 2020 Jan; 35(1):101-107. PubMed ID: 31786652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI.
    Zou HH; Yu J; Wei Y; Wu JF; Xu Q
    J Magn Reson Imaging; 2019 Mar; 49(3):885-893. PubMed ID: 30079601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models.
    Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J
    BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.
    Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW
    Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal timing for prediction of pathologic complete response to neoadjuvant chemoradiotherapy with diffusion-weighted MRI in patients with esophageal cancer.
    Borggreve AS; Heethuis SE; Boekhoff MR; Goense L; van Rossum PSN; Brosens LAA; van Lier ALHMW; van Hillegersberg R; Lagendijk JJW; Mook S; Ruurda JP; Meijer GJ
    Eur Radiol; 2020 Apr; 30(4):1896-1907. PubMed ID: 31822974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.
    Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A
    Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.