These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30852715)

  • 1. Random forest classifiers aid in the detection of incidental osteoblastic osseous metastases in DEXA studies.
    Mehta SD; Sebro R
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):903-909. PubMed ID: 30852715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier.
    Mehta SD; Sebro R
    J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing machine learning for opportunistic screening for low BMD using CT scans of the cervical spine.
    Sebro R; De la Garza-Ramos C
    J Neuroradiol; 2023 May; 50(3):293-301. PubMed ID: 36030924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning for Opportunistic Screening for Osteoporosis and Osteopenia Using Knee CT Scans.
    Sebro R; Elmahdy M
    Can Assoc Radiol J; 2023 Nov; 74(4):676-687. PubMed ID: 36960893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumbar computed tomography scans are not appropriate surrogates for bone mineral density scans in primary adult spinal deformity.
    Kohan EM; Nemani VM; Hershman S; Kang DG; Kelly MP
    Neurosurg Focus; 2017 Dec; 43(6):E4. PubMed ID: 29191096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Dual-Energy X-Ray Absorptiometry in CT Using Deep-Learning Segmentation Cascade.
    Krishnaraj A; Barrett S; Bregman-Amitai O; Cohen-Sfady M; Bar A; Chettrit D; Orlovsky M; Elnekave E
    J Am Coll Radiol; 2019 Oct; 16(10):1473-1479. PubMed ID: 30982683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunistic screening for osteoporosis and osteopenia from CT scans of the abdomen and pelvis using machine learning.
    Sebro R; De la Garza-Ramos C
    Eur Radiol; 2023 Mar; 33(3):1812-1823. PubMed ID: 36166085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT.
    Hong JH; Jung JY; Jo A; Nam Y; Pak S; Lee SY; Park H; Lee SE; Kim S
    Radiology; 2021 Jun; 299(3):626-632. PubMed ID: 33787335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunistic screening for osteoporosis by routine CT in Southern Europe.
    Alacreu E; Moratal D; Arana E
    Osteoporos Int; 2017 Mar; 28(3):983-990. PubMed ID: 28108802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT.
    Choi MK; Kim SM; Lim JK
    Acta Neurochir (Wien); 2016 Jul; 158(7):1421-7. PubMed ID: 27177734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The computed tomography-based fractal analysis of trabecular bone structure may help in detecting decreased quality of bone before urgent spinal procedures.
    Czyz M; Kapinas A; Holton J; Pyzik R; Boszczyk BM; Quraishi NA
    Spine J; 2017 Aug; 17(8):1156-1162. PubMed ID: 28416437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can low-frequency guided waves at the tibia paired with machine learning differentiate between healthy and osteopenic/osteoporotic subjects? A pilot study.
    Vogl F; Friesenbichler B; Hüsken L; Kramers-de Quervain IA; Taylor WR
    Ultrasonics; 2019 Apr; 94():109-116. PubMed ID: 30660337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone Mineral Density T-Scores Derived from CT Attenuation Numbers (Hounsfield Units): Clinical Utility and Correlation with Dual-energy X-ray Absorptiometry.
    Hendrickson NR; Pickhardt PJ; Del Rio AM; Rosas HG; Anderson PA
    Iowa Orthop J; 2018; 38():25-31. PubMed ID: 30104921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using radiomic features of lumbar spine CT images to differentiate osteoporosis from normal bone density.
    Xue Z; Huo J; Sun X; Sun X; Ai ST; LichiZhang ; Liu C
    BMC Musculoskelet Disord; 2022 Apr; 23(1):336. PubMed ID: 35395769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The association of syndesmophytes with vertebral bone mineral density in patients with ankylosing spondylitis.
    Gilgil E; Kaçar C; Tuncer T; Bütün B
    J Rheumatol; 2005 Feb; 32(2):292-4. PubMed ID: 15693090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept.
    Daye D; Staziaki PV; Furtado VF; Tabari A; Fintelmann FJ; Frenk NE; Shyn P; Tuncali K; Silverman S; Arellano R; Gee MS; Uppot RN
    Cardiovasc Intervent Radiol; 2019 Dec; 42(12):1771-1776. PubMed ID: 31489473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunistic Screening for Osteoporosis Using CT Scans of the Knee: A Pilot Study.
    Elmahdy M; Sebro R
    Stud Health Technol Inform; 2023 May; 302():909-910. PubMed ID: 37203533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment.
    Kim YW; Kim JH; Yoon SH; Lee JH; Lee CH; Shin CS; Park YS
    Osteoporos Int; 2017 Jan; 28(1):329-338. PubMed ID: 27480628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers.
    Qian Z; Li Y; Wang Y; Li L; Li R; Wang K; Li S; Tang K; Zhang C; Fan X; Chen B; Li W
    Cancer Lett; 2019 Jun; 451():128-135. PubMed ID: 30878526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.