BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30852818)

  • 1. Lys-C/Trypsin Tandem-Digestion Protocol for Gel-Free Proteomic Analysis of Colon Biopsies.
    Schniers A; Pasing Y; Hansen T
    Methods Mol Biol; 2019; 1959():113-122. PubMed ID: 30852818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Straightforward Protocol for Gel-Free Proteomic Analysis of Adipose Tissue.
    Pasing Y; Schniers A; Hansen T
    Methods Mol Biol; 2018; 1788():289-296. PubMed ID: 28980277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests.
    Ruprecht B; Zecha J; Zolg DP; Kuster B
    Methods Mol Biol; 2017; 1550():83-98. PubMed ID: 28188525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full Membrane Protein Coverage Digestion and Quantitative Bottom-Up Mass Spectrometry Proteomics.
    Capri J; Whitelegge JP
    Methods Mol Biol; 2017; 1550():61-67. PubMed ID: 28188523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis.
    León IR; Schwämmle V; Jensen ON; Sprenger RR
    Mol Cell Proteomics; 2013 Oct; 12(10):2992-3005. PubMed ID: 23792921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Proteome of Ulcerative Colitis in Colon Biopsies from Adults - Optimized Sample Preparation and Comparison with Healthy Controls.
    Schniers A; Anderssen E; Fenton CG; Goll R; Pasing Y; Paulssen RH; Florholmen J; Hansen T
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 28856821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem Mass Tag-Based Phosphoproteomics in Plants.
    Vélez-Bermúdez IC; Jain D; Ravindran A; Chen CW; Hsu CC; Schmidt W
    Methods Mol Biol; 2023; 2581():309-319. PubMed ID: 36413327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical cleavage-assisted tryptic digestion for membrane proteome analysis.
    Iwasaki M; Masuda T; Tomita M; Ishihama Y
    J Proteome Res; 2009 Jun; 8(6):3169-75. PubMed ID: 19348461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated workflow for extraction and solubilization of intermediate filaments from colorectal biopsies for proteomic analysis.
    Majumdar D; Rosser R; Havard S; Lobo AJ; Wright PC; Evans CA; Corfe BM
    Electrophoresis; 2012 Jul; 33(13):1967-74. PubMed ID: 22806461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Proteome Profiling to Assess Changes in Protein Abundance Using Isobaric Labeling and Liquid Chromatography-Tandem Mass Spectrometry.
    Possemato AP; Abell K; Stokes MP
    Methods Mol Biol; 2021; 2365():301-313. PubMed ID: 34432251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Depth, Reproducible Analysis of Human Plasma Using IgY 14 and SuperMix Immunodepletion.
    Beer LA; Ky B; Barnhart KT; Speicher DW
    Methods Mol Biol; 2017; 1619():81-101. PubMed ID: 28674879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Profiling of Lysine Accessibility to Evaluate Protein Structure Changes in Alzheimer's Disease.
    Yu K; Niu M; Wang H; Li Y; Wu Z; Zhang B; Haroutunian V; Peng J
    J Am Soc Mass Spectrom; 2021 Apr; 32(4):936-945. PubMed ID: 33683887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments.
    Loziuk PL; Wang J; Li Q; Sederoff RR; Chiang VL; Muddiman DC
    J Proteome Res; 2013 Dec; 12(12):5820-9. PubMed ID: 24144163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Assessment of Urea In-Solution Lys-C/Trypsin Digestions Reveals Superior Performance at Room Temperature over Traditional Proteolysis at 37 °C.
    Betancourt LH; Sanchez A; Pla I; Kuras M; Zhou Q; Andersson R; Marko-Varga G
    J Proteome Res; 2018 Jul; 17(7):2556-2561. PubMed ID: 29812944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies.
    Wu Z; Huang J; Huang J; Li Q; Zhang X
    Anal Chem; 2018 Aug; 90(16):9700-9707. PubMed ID: 30024741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry.
    Wang Z; Kavdia K; Dey KK; Pagala VR; Kodali K; Liu D; Lee DG; Sun H; Chepyala SR; Cho JH; Niu M; High AA; Peng J
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Profiling of Microgram-Scale Proteome by Tandem Mass Tag Mass Spectrometry.
    Liu D; Yang S; Kavdia K; Sifford JM; Wu Z; Xie B; Wang Z; Pagala VR; Wang H; Yu K; Dey KK; High AA; Serrano GE; Beach TG; Peng J
    J Proteome Res; 2021 Jan; 20(1):337-345. PubMed ID: 33175545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.
    Serra A; Zhu H; Gallart-Palau X; Park JE; Ho HH; Tam JP; Sze SK
    Anal Bioanal Chem; 2016 Mar; 408(7):1963-73. PubMed ID: 26804737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.