BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30853091)

  • 1. Feasibility of using a fully immersive virtual reality system for kinematic data collection.
    Spitzley KA; Karduna AR
    J Biomech; 2019 Apr; 87():172-176. PubMed ID: 30853091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization and calibration of the HTC VIVE for virtual reality physical therapy.
    Hemphill S; Nguyen A; Rodriguez ST; Menendez M; Wang E; Lawrence K; Caruso TJ
    Digit Health; 2020; 6():2055207620950929. PubMed ID: 32963801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head mounted displays for capturing head kinematics in postural tasks.
    Lubetzky AV; Wang Z; Krasovsky T
    J Biomech; 2019 Mar; 86():175-182. PubMed ID: 30797562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.
    Niehorster DC; Li L; Lappe M
    Iperception; 2017; 8(3):2041669517708205. PubMed ID: 28567271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative method for evaluation of 6 degree of freedom virtual reality systems.
    Jost TA; Drewelow G; Koziol S; Rylander J
    J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affordable Personalized, Immersive VR Motor Rehabilitation System with Full Body Tracking.
    Adolf J; Dolezal J; Lhotska L
    Stud Health Technol Inform; 2019; 261():75-81. PubMed ID: 31156094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment.
    Vox JP; Weber A; Wolf KI; Izdebski K; Schüler T; König P; Wallhoff F; Friemert D
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement Analysis between Vive and Vicon Systems to Monitor Lumbar Postural Changes.
    van der Veen SM; Bordeleau M; Pidcoe PE; France CR; Thomas JS
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the Oculus Rift S in controlled movement.
    Jost TA; Nelson B; Rylander J
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):632-636. PubMed ID: 31726896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy assessment for the co-registration between optical and VIVE head-mounted display tracking.
    Groves LA; Carnahan P; Allen DR; Adam R; Peters TM; Chen ECS
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1207-1215. PubMed ID: 31069642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the Kinematics of Daily Living Movements with Motion Capture Systems in Virtual Reality.
    Seo K; Lee A; Kim J; Ryu H; Choi H
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Reality for Shoulder Rehabilitation: Accuracy Evaluation of Oculus Quest 2.
    Carnevale A; Mannocchi I; Sassi MSH; Carli M; De Luca G; Longo UG; Denaro V; Schena E
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability.
    Liang HW; Chi SY; Chen BY; Hwang YH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():85-91. PubMed ID: 33125332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback from HTC Vive Sensors Results in Transient Performance Enhancements on a Juggling Task in Virtual Reality.
    Borglund F; Young M; Eriksson J; Rasmussen A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality.
    Jurda M; Urbanová P; Chmelík J
    J Forensic Leg Med; 2019 Aug; 66():50-57. PubMed ID: 31220789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Virtual Reality Headset Resolution and Field of View: Implications for Vision Care Applications.
    Lynn MH; Luo G; Tomasi M; Pundlik S; E Houston K
    Optom Vis Sci; 2020 Aug; 97(8):573-582. PubMed ID: 32769841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement.
    Stanica IC; Moldoveanu F; Portelli GP; Dascalu MI; Moldoveanu A; Ristea MG
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.