These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30853091)

  • 1. Feasibility of using a fully immersive virtual reality system for kinematic data collection.
    Spitzley KA; Karduna AR
    J Biomech; 2019 Apr; 87():172-176. PubMed ID: 30853091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization and calibration of the HTC VIVE for virtual reality physical therapy.
    Hemphill S; Nguyen A; Rodriguez ST; Menendez M; Wang E; Lawrence K; Caruso TJ
    Digit Health; 2020; 6():2055207620950929. PubMed ID: 32963801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement Accuracy of the HTC VIVE Tracker 3.0 Compared to Vicon System for Generating Valid Positional Feedback in Virtual Reality.
    Merker S; Pastel S; Bürger D; Schwadtke A; Witte K
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Head mounted displays for capturing head kinematics in postural tasks.
    Lubetzky AV; Wang Z; Krasovsky T
    J Biomech; 2019 Mar; 86():175-182. PubMed ID: 30797562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.
    Niehorster DC; Li L; Lappe M
    Iperception; 2017; 8(3):2041669517708205. PubMed ID: 28567271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative method for evaluation of 6 degree of freedom virtual reality systems.
    Jost TA; Drewelow G; Koziol S; Rylander J
    J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affordable Personalized, Immersive VR Motor Rehabilitation System with Full Body Tracking.
    Adolf J; Dolezal J; Lhotska L
    Stud Health Technol Inform; 2019; 261():75-81. PubMed ID: 31156094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment.
    Vox JP; Weber A; Wolf KI; Izdebski K; Schüler T; König P; Wallhoff F; Friemert D
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement Analysis between Vive and Vicon Systems to Monitor Lumbar Postural Changes.
    van der Veen SM; Bordeleau M; Pidcoe PE; France CR; Thomas JS
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of the Oculus Rift S in controlled movement.
    Jost TA; Nelson B; Rylander J
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):632-636. PubMed ID: 31726896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy assessment for the co-registration between optical and VIVE head-mounted display tracking.
    Groves LA; Carnahan P; Allen DR; Adam R; Peters TM; Chen ECS
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1207-1215. PubMed ID: 31069642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal image quality of virtual reality head mounted displays.
    Zhao C; Kim AS; Beams R; Badano A
    Sci Rep; 2022 Nov; 12(1):20235. PubMed ID: 36424434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the Kinematics of Daily Living Movements with Motion Capture Systems in Virtual Reality.
    Seo K; Lee A; Kim J; Ryu H; Choi H
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Reality for Shoulder Rehabilitation: Accuracy Evaluation of Oculus Quest 2.
    Carnevale A; Mannocchi I; Sassi MSH; Carli M; De Luca G; Longo UG; Denaro V; Schena E
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification and Rehabilitation of Unilateral Spatial Neglect in Immersive Virtual Reality: A Validation Study in Healthy Subjects.
    Faity G; Sidahmed Y; Laffont I; Froger J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability.
    Liang HW; Chi SY; Chen BY; Hwang YH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():85-91. PubMed ID: 33125332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback from HTC Vive Sensors Results in Transient Performance Enhancements on a Juggling Task in Virtual Reality.
    Borglund F; Young M; Eriksson J; Rasmussen A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.