BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30853170)

  • 1. Comparative transcriptome analysis of skeletal muscle in ADSSL1 myopathy.
    Park HJ; Hong JM; Lee JH; Shin HY; Kim SM; Park KD; Lee JH; Choi YC
    Neuromuscul Disord; 2019 Apr; 29(4):274-281. PubMed ID: 30853170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distal myopathy with ADSSL1 mutations in Korean patients.
    Park HJ; Shin HY; Kim S; Kim SH; Lee Y; Lee JH; Hong JM; Kim SM; Park KD; Choi BO; Lee JH; Choi YC
    Neuromuscul Disord; 2017 May; 27(5):465-472. PubMed ID: 28268051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADSSL1 mutation relevant to autosomal recessive adolescent onset distal myopathy.
    Park HJ; Hong YB; Choi YC; Lee J; Kim EJ; Lee JS; Mo WM; Ki SM; Kim HI; Kim HJ; Hyun YS; Hong HD; Nam K; Jung SC; Kim SB; Kim SH; Kim DH; Oh KW; Kim SH; Yoo JH; Lee JE; Chung KW; Choi BO
    Ann Neurol; 2016 Feb; 79(2):231-43. PubMed ID: 26506222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the disease phenotype of ADSSL1-associated myopathy in non-Korean patients.
    Mroczek M; Durmus H; Bijarnia-Mahay S; Töpf A; Ghaoui R; Bryen S; Duff J; England E; Cooper ST; MacArthur DG; Straub V
    Neuromuscul Disord; 2020 Apr; 30(4):310-314. PubMed ID: 32331917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADSSL1 myopathy is the most common nemaline myopathy in Japan with variable clinical features.
    Saito Y; Nishikawa A; Iida A; Mori-Yoshimura M; Oya Y; Ishiyama A; Komaki H; Nakamura S; Fujikawa S; Kanda T; Yamadera M; Sakiyama H; Hayashi S; Nonaka I; Noguchi S; Nishino I
    Neurology; 2020 Sep; 95(11):e1500-e1511. PubMed ID: 32646962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and characterization of a novel muscle adenylosuccinate synthetase, AdSSL1, from human bone marrow stromal cells.
    Sun H; Li N; Wang X; Chen T; Shi L; Zhang L; Wang J; Wan T; Cao X
    Mol Cell Biochem; 2005 Jan; 269(1-2):85-94. PubMed ID: 15786719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot investigation of muscle integrity in patients with ADSSL1 myopathy using electrical impedance myography.
    Farid AR; Golden E; Hu A; Robicheau S; Rutkove S; Al-Hertani W; Upadhyay J
    Muscle Nerve; 2023 Nov; 68(5):775-780. PubMed ID: 37682022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy.
    Llano-Diez M; Fury W; Okamoto H; Bai Y; Gromada J; Larsson L
    Skelet Muscle; 2019 Apr; 9(1):9. PubMed ID: 30992050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An autopsied case of ADSSL1 myopathy.
    Motoda A; Takahashi T; Watanabe C; Tachiyama Y; Ochi K; Saito Y; Iida A; Nishino I; Maruyama H
    Neuromuscul Disord; 2021 Nov; 31(11):1220-1225. PubMed ID: 34635388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling of skeletal muscles from Korean patients with Bethlem myopathy.
    Lee SA; Hong JM; Lee JH; Choi YC; Park HJ
    Medicine (Baltimore); 2023 Mar; 102(9):e33122. PubMed ID: 36862922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of Hallmark Muscle Genes Protects GneM743T/M743T Mutated Knock-In Mice From Kidney and Muscle Phenotype.
    Benyamini H; Kling Y; Yakovlev L; Becker Cohen M; Nevo Y; Elgavish S; Harazi A; Argov Z; Sela I; Mitrani-Rosenbaum S
    J Neuromuscul Dis; 2020; 7(2):119-136. PubMed ID: 31985472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Childhood-Onset Myopathy With Preserved Ambulation Caused by a Recurrent
    Baskar D; Polavarapu K; Preethish-Kumar V; Vengalil S; Nashi S; Töpf A; Thomas A; Sanka SB; Menon D; Srivastava K; Arunachal G; Nandeesh BN; Lochmüller H; Nalini A
    Neurol Genet; 2024 Feb; 10(1):e200122. PubMed ID: 38229919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of different feeds on DNA methylation, glycolysis/gluconeogenesis signaling pathway, and gene expression of sheep muscle.
    Song F; Akonyani ZP; Li Y; Su D; Wu L; Pang Y; Hu S; Wu D; Li C; Yang D; Wu J
    PeerJ; 2022; 10():e13455. PubMed ID: 35642195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Muscle in Healthy Subjects versus Those with GNE-Related Myopathy: Evaluation with Shear-Wave US--A Pilot Study.
    Carpenter EL; Lau HA; Kolodny EH; Adler RS
    Radiology; 2015 Nov; 277(2):546-54. PubMed ID: 26035587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid accumulation in dysferlin-deficient muscles.
    Grounds MD; Terrill JR; Radley-Crabb HG; Robertson T; Papadimitriou J; Spuler S; Shavlakadze T
    Am J Pathol; 2014 Jun; 184(6):1668-76. PubMed ID: 24685690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation.
    Bongiorni S; Gruber CE; Chillemi G; Bueno S; Failla S; Moioli B; Ferrè F; Valentini A
    Mol Biol Rep; 2016 Apr; 43(4):253-68. PubMed ID: 26896938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiling in tibial muscular dystrophy reveals unfolded protein response and altered autophagy.
    Screen M; Raheem O; Holmlund-Hampf J; Jonson PH; Huovinen S; Hackman P; Udd B
    PLoS One; 2014; 9(3):e90819. PubMed ID: 24618559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle.
    Sanoudou D; Haslett JN; Kho AT; Guo S; Gazda HT; Greenberg SA; Lidov HG; Kohane IS; Kunkel LM; Beggs AH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4666-71. PubMed ID: 12677001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GNE myopathy caused by a synonymous mutation leading to aberrant mRNA splicing.
    Zhu W; Eto M; Mitsuhashi S; Takata K; Beck G; Sumi-Akamaru H; Mochizuki H; Sakoda S; Takahashi MP; Nishino I
    Neuromuscul Disord; 2018 Feb; 28(2):154-157. PubMed ID: 29307446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy.
    Malicdan MC; Noguchi S; Nonaka I; Hayashi YK; Nishino I
    Hum Mol Genet; 2007 Nov; 16(22):2669-82. PubMed ID: 17704511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.