These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30853217)
21. Methylation of ribosomal proteins in Bacillus subtilis. Mardones E; Amaro AM; Jerez CA J Bacteriol; 1980 Apr; 142(1):355-8. PubMed ID: 6768716 [TBL] [Abstract][Full Text] [Related]
22. [In vivo degradation of bacterial ribosomes and the occurrence of abnormal particles]. Maruyama H Tanpakushitsu Kakusan Koso; 1972; 17(2):92-104. PubMed ID: 4623543 [No Abstract] [Full Text] [Related]
23. Diverse relationships between metal ions and the ribosome. Akanuma G Biosci Biotechnol Biochem; 2021 Jun; 85(7):1582-1593. PubMed ID: 33877305 [TBL] [Abstract][Full Text] [Related]
24. Protein synthesis in Bacillus subtilis. I. Hydrodynamics and in vitro functional properties of ribosomes from B. subtilis W168. Sharrock WJ; Rabinowitz JC J Mol Biol; 1979 Dec; 135(3):611-26. PubMed ID: 119873 [No Abstract] [Full Text] [Related]
25. Proteomic analysis of the Streptomyces griseus ribosomal fraction. Akanuma G; Nanamiya H; Mouri Y; Ishizuka M; Ohnishi Y Biosci Biotechnol Biochem; 2012; 76(12):2267-74. PubMed ID: 23221706 [TBL] [Abstract][Full Text] [Related]
26. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research. Schäkermann S; Dietze P; Bandow JE Methods Mol Biol; 2023; 2601():363-378. PubMed ID: 36445595 [TBL] [Abstract][Full Text] [Related]
27. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Farwell MA; Roberts MW; Rabinowitz JC Mol Microbiol; 1992 Nov; 6(22):3375-83. PubMed ID: 1283001 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of bacterial ribosome assembly: a suitable drug target? Maguire BA Microbiol Mol Biol Rev; 2009 Mar; 73(1):22-35. PubMed ID: 19258531 [TBL] [Abstract][Full Text] [Related]
29. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation. Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051 [TBL] [Abstract][Full Text] [Related]
30. Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Kurosawa K; Hosaka T; Tamehiro N; Inaoka T; Ochi K Appl Environ Microbiol; 2006 Jan; 72(1):71-7. PubMed ID: 16391027 [TBL] [Abstract][Full Text] [Related]
31. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs). Wicker-Planquart C; Jault JM FEBS Lett; 2015 Apr; 589(9):1026-32. PubMed ID: 25771857 [TBL] [Abstract][Full Text] [Related]
32. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. Akanuma G; Nanamiya H; Natori Y; Nomura N; Kawamura F J Bacteriol; 2006 Apr; 188(7):2715-20. PubMed ID: 16547061 [TBL] [Abstract][Full Text] [Related]
33. Ribosomal Profiling by Gradient Fractionation of Cell Lysates. Bhattarai N; Cao B; Zeng SX; Lu H Methods Mol Biol; 2023; 2666():149-155. PubMed ID: 37166663 [TBL] [Abstract][Full Text] [Related]
34. Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry. Chen SS; Sperling E; Silverman JM; Davis JH; Williamson JR Mol Biosyst; 2012 Oct; 8(12):3325-34. PubMed ID: 23090316 [TBL] [Abstract][Full Text] [Related]
35. Selective translation by alternative bacterial ribosomes. Chen YX; Xu ZY; Ge X; Sanyal S; Lu ZJ; Javid B Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19487-19496. PubMed ID: 32723820 [TBL] [Abstract][Full Text] [Related]
36. Systematic stress adaptation of Bacillus subtilis to tetracycline exposure. Shen J; Liu Z; Yu H; Ye J; Long Y; Zhou P; He B Ecotoxicol Environ Saf; 2020 Jan; 188():109910. PubMed ID: 31740237 [TBL] [Abstract][Full Text] [Related]
37. NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis. Yakhnin H; Yakhnin AV; Mouery BL; Mandell ZF; Karbasiafshar C; Kashlev M; Babitzke P mBio; 2019 Nov; 10(6):. PubMed ID: 31719185 [TBL] [Abstract][Full Text] [Related]
38. Ribosomal heterogeneity - A new inroad for pharmacological innovation. Ford D Biochem Pharmacol; 2020 May; 175():113874. PubMed ID: 32105657 [TBL] [Abstract][Full Text] [Related]
39. Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis. Smith WP; Tai PC; Davis BD Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5922-5. PubMed ID: 104295 [TBL] [Abstract][Full Text] [Related]
40. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. Matsuo Y; Oshima T; Loh PC; Morimoto T; Ogasawara N J Biol Chem; 2007 Aug; 282(35):25270-7. PubMed ID: 17613524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]