These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30853375)
1. Split luciferase-based assay for simultaneous analyses of the ligand concentration- and time-dependent recruitment of β-arrestin2. Littmann T; Buschauer A; Bernhardt G Anal Biochem; 2019 May; 573():8-16. PubMed ID: 30853375 [TBL] [Abstract][Full Text] [Related]
2. A Split Luciferase Complementation Assay for the Quantification of β-Arrestin2 Recruitment to Dopamine D Forster L; Grätz L; Mönnich D; Bernhardt G; Pockes S Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32847148 [TBL] [Abstract][Full Text] [Related]
3. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. Ma X; Leurs R; Vischer HF Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273 [TBL] [Abstract][Full Text] [Related]
4. Parallel Interrogation of β-Arrestin2 Recruitment for Ligand Screening on a GPCR-Wide Scale using PRESTO-Tango Assay. Zeghal M; Laroche G; Giguère PM J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225148 [TBL] [Abstract][Full Text] [Related]
5. Molecular dissection of the human A Storme J; Cannaert A; Van Craenenbroeck K; Stove CP Biochem Pharmacol; 2018 Feb; 148():298-307. PubMed ID: 29309765 [TBL] [Abstract][Full Text] [Related]
6. A novel luminescence-based β-arrestin recruitment assay for unmodified receptors. Hauge Pedersen M; Pham J; Mancebo H; Inoue A; Asher WB; Javitch JA J Biol Chem; 2021; 296():100503. PubMed ID: 33684444 [TBL] [Abstract][Full Text] [Related]
8. A split luciferase-based probe for quantitative proximal determination of Gα Littmann T; Ozawa T; Hoffmann C; Buschauer A; Bernhardt G Sci Rep; 2018 Nov; 8(1):17179. PubMed ID: 30464299 [TBL] [Abstract][Full Text] [Related]
9. Analysis of temporal patterns of GPCR-β-arrestin interactions using split luciferase-fragment complementation. Hattori M; Tanaka M; Takakura H; Aoki K; Miura K; Anzai T; Ozawa T Mol Biosyst; 2013 May; 9(5):957-64. PubMed ID: 23302795 [TBL] [Abstract][Full Text] [Related]
10. New Insights into Arrestin Recruitment to GPCRs. Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755 [TBL] [Abstract][Full Text] [Related]
11. [β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists]. Wang YR; Cheng DQ; Ma L; Liu X Sheng Li Xue Bao; 2022 Dec; 74(6):993-1004. PubMed ID: 36594387 [TBL] [Abstract][Full Text] [Related]
12. Tango assay for ligand-induced GPCR-β-arrestin2 interaction: Application in drug discovery. Dogra S; Sona C; Kumar A; Yadav PN Methods Cell Biol; 2016; 132():233-54. PubMed ID: 26928547 [TBL] [Abstract][Full Text] [Related]
13. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. Hamdan FF; Audet M; Garneau P; Pelletier J; Bouvier M J Biomol Screen; 2005 Aug; 10(5):463-75. PubMed ID: 16093556 [TBL] [Abstract][Full Text] [Related]
14. Measurement of β-Arrestin Recruitment at GPCRs Using the Tango Assay. Laroche G; Giguère PM Methods Mol Biol; 2019; 1947():257-267. PubMed ID: 30969421 [TBL] [Abstract][Full Text] [Related]
15. Acute ethanol exposure reduces serotonin receptor 1A internalization by increasing ubiquitination and degradation of β-arrestin2. Luessen DJ; Sun H; McGinnis MM; Hagstrom M; Marrs G; McCool BA; Chen R J Biol Chem; 2019 Sep; 294(38):14068-14080. PubMed ID: 31366729 [TBL] [Abstract][Full Text] [Related]
16. Bioluminescence imaging of G protein-coupled receptor activation in living mice. Kono M; Conlon EG; Lux SY; Yanagida K; Hla T; Proia RL Nat Commun; 2017 Oct; 8(1):1163. PubMed ID: 29079828 [TBL] [Abstract][Full Text] [Related]
17. Structural Insights into M1 Muscarinic Acetylcholine Receptor Signaling Bias between Gαq and β-Arrestin through BRET Assays and Molecular Docking. Wang D; Yao Y; Wang S; Hou Y; Zhao L; Wang H; Chen H; Xu J Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108518 [TBL] [Abstract][Full Text] [Related]
18. Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Møller TC; Pedersen MF; van Senten JR; Seiersen SD; Mathiesen JM; Bouvier M; Bräuner-Osborne H Sci Rep; 2020 Oct; 10(1):17395. PubMed ID: 33060647 [TBL] [Abstract][Full Text] [Related]
19. β-Arrestin2 directly or through GRK2 inhibits PKCβII activation in a ubiquitination-dependent manner. Zhang X; Zheng M; Sun N; Kim KM Biochim Biophys Acta Mol Cell Res; 2018 Jan; 1865(1):142-157. PubMed ID: 29054428 [TBL] [Abstract][Full Text] [Related]
20. A novel molecular mechanism involved in the crosstalks between homologous and PKC-mediated heterologous regulatory pathway of dopamine D Zhang X; Min X; Zhu A; Kim KM Biochem Pharmacol; 2020 Apr; 174():113791. PubMed ID: 31917245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]