These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30853548)

  • 1. Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells.
    Al Bkhetan Z; Kadlof M; Kraft A; Plewczynski D
    Methods; 2019 Aug; 166():83-90. PubMed ID: 30853548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction.
    Al Bkhetan Z; Plewczynski D
    Sci Rep; 2018 Mar; 8(1):5217. PubMed ID: 29581440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing 3D interaction maps from 1D epigenomes.
    Zhu Y; Chen Z; Zhang K; Wang M; Medovoy D; Whitaker JW; Ding B; Li N; Zheng L; Wang W
    Nat Commun; 2016 Mar; 7():10812. PubMed ID: 26960733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect.
    Chiliński M; Sengupta K; Plewczynski D
    Semin Cell Dev Biol; 2022 Jan; 121():171-185. PubMed ID: 34429265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine and Deep Learning Methods for Predicting 3D Genome Organization.
    Wall BPG; Nguyen M; Harrell JC; Dozmorov MG
    Methods Mol Biol; 2025; 2856():357-400. PubMed ID: 39283464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Study of Supervised Machine Learning Algorithms for the Prediction of Long-Range Chromatin Interactions.
    Vanhaeren T; Divina F; García-Torres M; Gómez-Vela F; Vanhoof W; Martínez-García PM
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32847102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks.
    Liu T; Wang Z
    PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine and deep learning methods for predicting 3D genome organization.
    Wall BPG; Nguyen M; Harrell JC; Dozmorov MG
    ArXiv; 2024 Mar; ():. PubMed ID: 38495565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting chromatin architecture from models of polymer physics.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Chromosome Res; 2017 Mar; 25(1):25-34. PubMed ID: 28070687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of chromatin accessibility identified important epigenomic regulators.
    Zhao Y; Dong Y; Hong W; Jiang C; Yao K; Cheng C
    BMC Genomics; 2022 Jan; 23(1):19. PubMed ID: 34996354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin loop anchors predict transcript and exon usage.
    Zhang Y; Cai Y; Roca X; Kwoh CK; Fullwood MJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34263910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features.
    Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W
    Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin.
    Thibodeau A; Márquez EJ; Shin DG; Vera-Licona P; Ucar D
    Sci Rep; 2017 Oct; 7(1):14466. PubMed ID: 29089515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance.
    Jost D; Vaillant C
    Nucleic Acids Res; 2018 Mar; 46(5):2252-2264. PubMed ID: 29365171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences.
    Cao F; Zhang Y; Cai Y; Animesh S; Zhang Y; Akincilar SC; Loh YP; Li X; Chng WJ; Tergaonkar V; Kwoh CK; Fullwood MJ
    Genome Biol; 2021 Aug; 22(1):226. PubMed ID: 34399797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.